Skip to main content

Dynamic Identification of Stop Locations from GPS Trajectories Based on Their Temporal and Spatial Characteristics

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12894))

Included in the following conference series:

Abstract

The identification of stop locations in GPS trajectories is an essential preliminary step for obtaining trip information. We propose a neural network approach, based on the theoretical framework of dynamic neural fields (DNF), to identify automatically stop locations from GPS trajectories using their spatial and temporal characteristics. Experiments with real-world GPS trajectories were performed to show the feasibility of the proposed approach. The outcomes are compared with results obtained from more conventional clustering algorithms (K-means, hierarchical clustering, and HDBSCAN) which usually limit the use of the available temporal information to the definition of a threshold for the duration of stay. The experimental results show that the DNF approach not only robustly identifies places visited for a longer time but also stop locations that are visited for shorter periods but with higher frequency. Moreover, the self-stabilized activation patterns that the network dynamics develop and continuously update in response to GPS input encode simultaneously the spatial information and the time spent in each location. The impact of the obtained results on systems that automatically detect drivers’ daily routines from GPS trajectories is discussed.

The work received financial support from European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) and national funds, through FCT (Project “Neurofield”, ref POCI01-0145FEDER-031393) and ADI (Project “Easy Ride:Experience is everything”, ref POCI-01-0247-FEDER-039334), FCT PhD fellowship PD/BD/128183/2016, and R&D Units Project Scope: UIDB/00319/2020 and UIDB/00013/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977). https://doi.org/10.1007/BF00337259

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrade, T., Cancela, B., Gama, J.: Discovering common pathways across users’ habits in mobility data. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11805, pp. 410–421. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30244-3_34

    Chapter  Google Scholar 

  3. Bao, J., Zheng, Yu., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks: a survey. GeoInformatica 19(3), 525–565 (2015). https://doi.org/10.1007/s10707-014-0220-8

    Article  Google Scholar 

  4. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

    Chapter  Google Scholar 

  5. Campello, R.J., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Disc. Data 10(1), 1–51 (2015)

    Article  Google Scholar 

  6. Chen, P., Shi, W., Zhou, X., Liu, Z., Fu, X.: STLP-GSM: a method to predict future locations of individuals based on geotagged social media data. Int. J. Geogr. Inf. Sci. 33(12), 2337–2362 (2019)

    Article  Google Scholar 

  7. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. J. Neural. Eng. 3, 36–54 (2006)

    Article  Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996, pp. 226–231 (1996)

    Google Scholar 

  9. Fernandes, C., Ferreira, F., Erlhagen, W., Monteiro, S., Bicho, E.: A deep learning approach for intelligent cockpits: learning drivers routines. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds.) IDEAL 2020. LNCS, vol. 12490, pp. 173–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62365-4_17

    Chapter  Google Scholar 

  10. Ferreira, F., Wojtak, W., Sousa, E., Louro, L., Bicho, E., Erlhagen, W.: Rapid learning of complex sequences with time constraints: a dynamic neural field models. EEE Trans. Cogn. Dev. Syst. (2020). https://doi.org/10.1109/TCDS.2020.2991789

  11. Fu, Z., Tian, Z., Xu, Y., Qiao, C.: A two-step clustering approach to extract locations from individual GPS trajectory data. Int. J. Geo-Inf. 5(10), 166 (2016)

    Article  Google Scholar 

  12. Hamid, R.A., Croock, M.S.: A developed GPS trajectories data management system for predicting tourists’ POI. TELKOMNIKA Telecommun. Comput. Electron. Control 18(1), 124–132 (2020)

    Google Scholar 

  13. Han, J., Kamber, M., Pei, J.: Data Mining - Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. SSS, Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  15. Huang, Q.: Mining online footprints to predict user’s next location. Int. J. Geog. Inf. Sci. 31(3), 523–541 (2017)

    Article  Google Scholar 

  16. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  17. Järv, P., Tammet, T., Tall, M.: Hierarchical regions of interest. In: 19th IEEE International Conference on Mobile Data Management (MDM), pp. 86–95. IEEE (2018)

    Google Scholar 

  18. Jin, D., Peng, J., Li, B.: A new clustering approach on the basis of dynamical neural field. Neural Comput. 23(8), 2032–2057 (2011)

    Article  MathSciNet  Google Scholar 

  19. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity based on location history. In: 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2008)

    Google Scholar 

  20. Luo, T., Zheng, X., Xu, G., Fu, K., Ren, W.: An improved DBSCAN algorithm to detect stops in individual trajectories. SPRS Int. J. Geo-Inf. 6(3), 63 (2017)

    Article  Google Scholar 

  21. McInnes, L., Healy, J., Astels, S.: hdbscan: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017)

    Article  Google Scholar 

  22. Montini, L., Rieser-Schüssler, N., Horni, A., Axhausen, K.W.: Trip purpose identification from GPS tracks. Transp. Res. Rec. J. Transp. Res. Board 2405(1), 16–23 (2014)

    Article  Google Scholar 

  23. Sandamirskaya, Y., Zibner, S.K., Schneegans, S., Schöner, G.: Using dynamic field theory to extend the embodiment stance toward higher cognition. New Ideas Psychol. 31(3), 322–339 (2013)

    Article  Google Scholar 

  24. Schöner, G.: Dynamical Systems Approaches to Cognition, pp. 101–126 (2008)

    Google Scholar 

  25. Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  26. Wojtak, W., Coombes, S., Bicho, E., Erlhagen, W.: Combining spatial and parametric working memory in a dynamic neural field model. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 411–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_48

    Chapter  Google Scholar 

  27. Wojtak, W., Ferreira, F., Vicente, P., Louro, L., Bicho, E., Erlhagen, W.: A neural integrator model for planning and value-based decision making of a robotics assistant. Neural Comput. Appl. 33(8), 3737–3756 (2020). https://doi.org/10.1007/s00521-020-05224-8

    Article  Google Scholar 

  28. Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 186–194 (2012)

    Google Scholar 

  29. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: 10th International Conference on Ubiquitous Computing, pp. 312–321 (2008)

    Google Scholar 

  30. Zheng, Y., Xie, X., Ma, W.Y., et al.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  31. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: 18th International Conference on World wide web, pp. 791–800 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, F. et al. (2021). Dynamic Identification of Stop Locations from GPS Trajectories Based on Their Temporal and Spatial Characteristics. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12894. Springer, Cham. https://doi.org/10.1007/978-3-030-86380-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86380-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86379-1

  • Online ISBN: 978-3-030-86380-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics