Skip to main content

ComBiNet: Compact Convolutional Bayesian Neural Network for Image Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12893))

Included in the following conference series:

Abstract

Fully convolutional U-shaped neural networks have largely been the dominant approach for pixel-wise image segmentation. In this work, we tackle two defects that hinder their deployment in real-world applications: 1) Predictions lack uncertainty quantification that may be crucial to many decision-making systems; 2) Large memory storage and computational consumption demanding extensive hardware resources. To address these issues and improve their practicality we demonstrate a few-parameter compact Bayesian convolutional architecture, that achieves a marginal improvement in accuracy in comparison to related work using significantly fewer parameters and compute operations. The architecture combines parameter-efficient operations such as separable convolutions, bilinear interpolation, multi-scale feature propagation and Bayesian inference for per-pixel uncertainty quantification through Monte Carlo Dropout. The best performing configurations required fewer than 2.5 million parameters on diverse challenging datasets with few observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_5

    Chapter  Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158 (2015)

  6. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation. arXiv preprint arXiv:1506.02157 (2015)

  7. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: NeurIPS pp. 3581–3590 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708. IEEE (2017)

    Google Scholar 

  11. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional DenseNets for semantic segmentation. In: CVPR Workshops, pp. 11–19 (2017)

    Google Scholar 

  12. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  13. Liang, F., Li, Q., Zhou, L.: Bayesian neural networks for selection of drug sensitive genes. J. Am. Stat. Assoc. 113(523), 955–972 (2018)

    Article  MathSciNet  Google Scholar 

  14. Liu, C., et al.: Auto-Deeplab: hierarchical neural architecture search for semantic image segmentation. In: CVPR, pp. 82–92. IEEE (2019)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T., Berkeley, U.: Fully convolutional networks for semantic segmentation. arXiv preprint arXiv:1411.4038 (2014)

  16. McAllister, R., et al.: Concrete problems for autonomous vehicle safety: advantages of Bayesian deep learning. In: IJCAI, IJCAI 2017, p. 4745–4753. AAAI Press (2017)

    Google Scholar 

  17. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

    Chapter  Google Scholar 

  18. Myojin, T., Hashimoto, S., Ishihama, N.: Detecting uncertain BNN outputs on FPGA using monte Carlo dropout sampling. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12397, pp. 27–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61616-8_3

    Chapter  Google Scholar 

  19. Nekrasov, V., Shen, C., Reid, I.: Template-based automatic search of compact semantic segmentation architectures. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 1980–1989. IEEE (2020)

    Google Scholar 

  20. Nguyen, L.: Bacteria detection with darkfield microscopy (2020). Data retrieved from work at Hochschule Heilbronn. www.kaggle.com/longnguyen2306/bacteria-detection-with-darkfield-microscopy/metadata

  21. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ErfNet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2017)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Ruiz-del Solar, J., Loncomilla, P., Soto, N.: A survey on deep learning methods for robot vision. arXiv preprint arXiv:1803.10862 (2018)

  24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph., 24–33 (2019)

    Google Scholar 

  26. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  27. Zhang, R.: Making convolutional networks shift-invariant again. arXiv preprint arXiv:1904.11486 (2019)

  28. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 418–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_25

    Chapter  Google Scholar 

  29. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890. IEEE (2017)

    Google Scholar 

  30. Zhu, Y., et al.: Improving semantic segmentation via video propagation and label relaxation. In: CVPR, pp. 8856–8865. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

We thank the ICANN 2021 reviewers for useful feedback. Martin Ferianc was sponsored through a scholarship from ICCS at UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ferianc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferianc, M., Manocha, D., Fan, H., Rodrigues, M. (2021). ComBiNet: Compact Convolutional Bayesian Neural Network for Image Segmentation. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics