Skip to main content

Diagnostic Approach to Tracheomalacia and Medical Management

  • Living reference work entry
  • First Online:
Pediatric Aerodigestive Medicine

Abstract

Tracheomalacia is the dynamic collapse of the trachea during the respiratory cycle. It is common in children due to ongoing development of the trachea and differences in the structure of tracheal cartilage and smooth muscle compared to adults. Underlying or congenital anomalies, such as tracheoesophageal fistula and bronchopulmonary dysplasia, can cause additional alterations in tracheal structure resulting in an increased prevalence of tracheomalacia. The evaluation and management of tracheomalacia is multifaceted. Clinical presentation and symptom report are typically the driving factors in assessment and treatment. Symptoms are variable, often related to the severity of tracheomalacia. There is no one single test to diagnose tracheomalacia; a variety of diagnostic methods can be utilized, including direct assessment with bronchoscopy and imaging modalities such as chest computed tomography and magnetic resonance imaging. Each of these modalities has advantages and disadvantages, and often a combination of techniques provides the most complete understanding. There are several options available for medical management in patients, typically guided by symptoms. While there are multiple choices available, there is no single gold standard therapy available, and there is typically limited evidence for use in patients with tracheomalacia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boogaard R, Huijsmans SH, Pijnenburg MW, Tiddens HA, de Jongste JC, Merkus PJ. Tracheomalacia and bronchomalacia in children: incidence and patient characteristics. Chest. 2005;128(5):3391–7.

    Article  PubMed  Google Scholar 

  2. Hysinger EFN, Padula M, Shinohara R, Zhang H, Panitch H, Kawut S. Tracheobronchomalacia is associated with increased morbidity in bronchopulmonary dysplasia. Ann Am Thorac Soc. 2017;14(9):1428–35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shieh HF, Smithers CJ, Hamilton TE, Zurakowski D, Visner GA, Manfredi MA, et al. Posterior tracheopexy for severe tracheomalacia associated with esophageal atresia (EA): primary treatment at the time of initial EA repair versus secondary treatment. Front Surg. 2017;4:80.

    Article  PubMed  Google Scholar 

  4. Hysinger E, Friedman N, Jensen E, Zhang H, Piccione J. Bronchoscopy in neonates with severe bronchopulmonary dysplasia in the NICU. J Perinatol. 2019;39(2):263–8.

    Article  CAS  PubMed  Google Scholar 

  5. Masters IB, Zimmerman PV, Pandeya N, Petsky HL, Wilson SB, Chang AB. Quantified tracheobronchomalacia disorders and their clinical profiles in children. Chest. 2008;133(2):461–7.

    Article  PubMed  Google Scholar 

  6. Jacobs IJ, Ku WY, Que J. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev Biol. 2012;369(1):54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bucher U, Reid L. Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax. 1961;16:207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edwards NA, Shacham-Silverberg V, Weitz L, Kingma PS, Shen Y, Wells JM, et al. Developmental basis of trachea-esophageal birth defects. Dev Biol. 2021;477:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deoras KS, Wolfson MR, Searls RL, Hilfer SR, Shaffer TH. Developmental changes in tracheal structure. Pediatr Res. 1991;30(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  10. Panitch HB, Deoras KS, Wolfson MR, Shaffer TH. Maturational changes in airway smooth muscle structure-function relationships. Pediatr Res. 1992;31(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cullen AB, Cooke PH, Driska SP, Wolfson MR, Shaffer TH. Correlation of tracheal smooth muscle function with structure and protein expression during early development. Pediatr Pulmonol. 2007;42(5):421–32.

    Article  PubMed  Google Scholar 

  12. Sparrow MP, Mitchell HW. Contraction of smooth muscle of pig airway tissues from before birth to maturity. J Appl Physiol (1985). 1990;68(2):468–77.

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez RJ, Dreshaj IA, Kumar G, Miller MJ, Martin RJ. Maturation of the cholinergic response of tracheal smooth muscle in the piglet. Pediatr Pulmonol. 1994;18(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  14. Panitch HB, Allen JL, Ryan JP, Wolfson MR, Shaffer TH. A comparison of preterm and adult airway smooth muscle mechanics. J Appl Physiol (1985). 1989;66(4):1760–5.

    Article  CAS  PubMed  Google Scholar 

  15. Hamaide A, Arnoczky SP, Ciarelli MJ, Gardner K. Effects of age and location on the biomechanical and biochemical properties of canine tracheal ring cartilage in dogs. Am J Vet Res. 1998;59(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  16. Rains JK, Bert JL, Roberts CR, Pare PD. Mechanical properties of human tracheal cartilage. J Appl Physiol (1985). 1992;72(1):219–25.

    Article  CAS  PubMed  Google Scholar 

  17. Croteau JR, Cook CD. Volume-pressure and length-tension measurements in human tracheal and bronchial segments. J Appl Physiol. 1961;16:170–2.

    Article  CAS  PubMed  Google Scholar 

  18. Panitch HB. Maturational aspects of human airway smooth muscle function. Monaldi Arch Chest Dis. 1996;51(5):413–8.

    CAS  PubMed  Google Scholar 

  19. Gunatilaka CC, Higano NS, Hysinger EB, Gandhi DB, Fleck RJ, Hahn AD, et al. Increased work of breathing due to tracheomalacia in neonates. Ann Am Thorac Soc. 2020;17(10):1247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gunatilaka CC, Hysinger EB, Schuh A, Gandhi DB, Higano NS, Xiao Q, et al. Neonates with tracheomalacia generate auto-positive end-expiratory pressure via glottis closure. Chest. 2021;160(6):2168–77.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wallis C, Alexopoulou E, Anton-Pacheco JL, Bhatt JM, Bush A, Chang AB, et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J. 2019;54(3):1900382.

    Article  PubMed  Google Scholar 

  22. Hysinger EB, Hart CK, Burg G, De Alarcon A, Benscoter D. Differences in flexible and rigid bronchoscopy for assessment of tracheomalacia. Laryngoscope. 2020;131(1):201–4.

    Article  PubMed  Google Scholar 

  23. Sanchez MO, Greer MC, Masters IB, Chang AB. A comparison of fluoroscopic airway screening with flexible bronchoscopy for diagnosing tracheomalacia. Pediatr Pulmonol. 2012;47(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  24. Emmett S, Megow A, Woods C, Wood J. Poor correlation between airway fluoroscopy and rigid bronchoscopic evaluation in paediatric tracheomalacia. Int J Pediatr Otorhinolaryngol. 2022;158:111157.

    Article  CAS  PubMed  Google Scholar 

  25. Wittenborg MH, Gyepes MT, Crocker D. Tracheal dynamics in infants with respiratory distress, stridor, and collapsing trachea. Radiology. 1967;88(4):653–62.

    Article  CAS  PubMed  Google Scholar 

  26. Lee EY, Strauss KJ, Tracy DA, Bastos M, Zurakowski D, Boiselle PM. Comparison of standard-dose and reduced-dose expiratory MDCT techniques for assessment of tracheomalacia in children. Acad Radiol. 2010;17(4):504–10.

    Article  PubMed  Google Scholar 

  27. Su SC, Masters IB, Buntain H, Frawley K, Sarikwal A, Watson D, et al. A comparison of virtual bronchoscopy versus flexible bronchoscopy in the diagnosis of tracheobronchomalacia in children. Pediatr Pulmonol. 2017;52(4):480–6.

    Article  PubMed  Google Scholar 

  28. Higano NS, Gandhi DB, Xiao Q, Gunatilaka CC, Hysinger EB, Fleck RJ, et al. Virtual bronchoscopy of neonatal airway malacia via high-resolution, respiratory-gated magnetic resonance imaging. Am J Respir Crit Care Med. 2022;206(5):e42–e3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hysinger EB, Bates AJ, Higano NS, Benscoter D, Fleck RJ, Hart C, et al. Ultrashort echo-time MRI for the assessment of tracheomalacia in neonates. Chest. 2019;157(3):595–602.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bates AJ, Higano NS, Hysinger EB, Fleck RJ, Hahn AD, Fain SB, et al. Quantitative assessment of regional dynamic airway collapse in neonates via retrospectively respiratory-gated (1) H ultrashort echo time MRI. J Magn Reson Imaging. 2018;49(3):659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okazaki J, Isono S, Hasegawa H, Sakai M, Nagase Y, Nishino T. Quantitative assessment of tracheal collapsibility in infants with tracheomalacia. Am J Respir Crit Care Med. 2004;170(7):780–5.

    Article  PubMed  Google Scholar 

  32. Panitch HB, Talmaciu I, Heckman J, Wolfson MR, Shaffer TH. Quantitative bronchoscopic assessment of airway collapsibility in newborn lamb tracheae. Pediatr Res. 1998;43(6):832–9.

    Article  CAS  PubMed  Google Scholar 

  33. Koslo RJ, Bhutani VK, Shaffer TH. The role of tracheal smooth muscle contraction on neonatal tracheal mechanics. Pediatr Res. 1986;20(12):1216–20.

    Article  CAS  PubMed  Google Scholar 

  34. Trachsel D, Erb TO, Frei FJ, Hammer J, Swiss Paediatric Respiratory Research G. Use of continuous positive airway pressure during flexible bronchoscopy in young children. Eur Respir J. 2005;26(5):773–7.

    Article  CAS  PubMed  Google Scholar 

  35. Panitch HB, Allen JL, Alpert BE, Schidlow DV. Effects of CPAP on lung mechanics in infants with acquired tracheobronchomalacia. Am J Respir Crit Care Med. 1994;150(5 Pt 1):1341–6.

    Article  CAS  PubMed  Google Scholar 

  36. Davis S, Jones M, Kisling J, Angelicchio C, Tepper RS. Effect of continuous positive airway pressure on forced expiratory flows in infants with tracheomalacia. Am J Respir Crit Care Med. 1998;158(1):148–52.

    Article  CAS  PubMed  Google Scholar 

  37. Hsia D, DiBlasi RM, Richardson P, Crotwell D, Debley J, Carter E. The effects of flexible bronchoscopy on mechanical ventilation in a pediatric lung model. Chest. 2009;135(1):33–40.

    Article  PubMed  Google Scholar 

  38. Evans RG, Crawford MW, Noseworthy MD, Yoo SJ. Effect of increasing depth of propofol anesthesia on upper airway configuration in children. Anesthesiology. 2003;99(3):596–602.

    Article  CAS  PubMed  Google Scholar 

  39. Crawford MW, Arrica M, Macgowan CK, Yoo SJ. Extent and localization of changes in upper airway caliber with varying concentrations of sevoflurane in children. Anesthesiology. 2006;105(6):1147–52; discussion 5A.

    Article  CAS  PubMed  Google Scholar 

  40. Crawford MW, Rohan D, Macgowan CK, Yoo SJ, Macpherson BA. Effect of propofol anesthesia and continuous positive airway pressure on upper airway size and configuration in infants. Anesthesiology. 2006;105(1):45–50.

    Article  PubMed  Google Scholar 

  41. Eastwood PR, Szollosi I, Platt PR, Hillman DR. Collapsibility of the upper airway during anesthesia with isoflurane. Anesthesiology. 2002;97(4):786–93.

    Article  CAS  PubMed  Google Scholar 

  42. Mahmoud M, Jung D, Salisbury S, McAuliffe J, Gunter J, Patio M, et al. Effect of increasing depth of dexmedetomidine and propofol anesthesia on upper airway morphology in children and adolescents with obstructive sleep apnea. J Clin Anesth. 2013;25(7):529–41.

    Article  CAS  PubMed  Google Scholar 

  43. Masters IB, Eastburn MM, Francis PW, Wootton R, Zimmerman PV, Ware RS, et al. Quantification of the magnification and distortion effects of a pediatric flexible video-bronchoscope. Respir Res. 2005;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009;135(2):391–400.

    Article  PubMed  Google Scholar 

  45. Burg G, Hossain MM, Wood R, Hysinger EB. Evaluation of agreement on presence and severity of tracheobronchomalacia by dynamic flexible bronchoscopy. Ann Am Thorac Soc. 2021;18(10):1749–52.

    Article  PubMed  Google Scholar 

  46. Masters IB, Eastburn MM, Wootton R, Ware RS, Francis PW, Zimmerman PV, et al. A new method for objective identification and measurement of airway lumen in paediatric flexible videobronchoscopy. Thorax. 2005;60(8):652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wootten CT, Belcher R, Francom CR, Prager JD. Aerodigestive programs enhance outcomes in pediatric patients. Otolaryngol Clin N Am. 2019;52(5):937–48.

    Article  Google Scholar 

  48. Wood RE. Evaluation of the upper airway in children. Curr Opin Pediatr. 2008;20(3):266–71.

    Article  PubMed  Google Scholar 

  49. Ngerncham M, Lee EY, Zurakowski D, Tracy DA, Jennings R. Tracheobronchomalacia in pediatric patients with esophageal atresia: comparison of diagnostic laryngoscopy/bronchoscopy and dynamic airway multidetector computed tomography. J Pediatr Surg. 2015;50(3):402–7.

    Article  PubMed  Google Scholar 

  50. Lee S, Im SA, Yoon JS. Tracheobronchomalacia in infants: the use of non-breath held 3D CT bronchoscopy. Pediatr Pulmonol. 2014;49(10):1028–35.

    Article  PubMed  Google Scholar 

  51. Faust RA, Remley KB, Rimell FL. Real-time, cine magnetic resonance imaging for evaluation of the pediatric airway. Laryngoscope. 2001;111(12):2187–90.

    Article  CAS  PubMed  Google Scholar 

  52. Higano NS, Hahn AD, Tkach JA, Cao X, Walkup LL, Thomen RP, et al. Retrospective respiratory self-gating and removal of bulk motion in pulmonary UTE MRI of neonates and adults. Magn Reson Med. 2017;77(3):1284–95.

    Article  PubMed  Google Scholar 

  53. Hahn AD, Higano NS, Walkup LL, Thomen RP, Cao X, Merhar SL, et al. Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J Magn Reson Imaging. 2017;45(2):463–71.

    Article  PubMed  Google Scholar 

  54. Adaikalam SA, Higano NS, Hysinger EB, Bates AJ, Fleck RJ, Schapiro AH, et al. Tracheostomy prediction model in neonatal bronchopulmonary dysplasia via lung and airway MRI. Pediatr Pulmonol. 2022;57(4):1042–50.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pan W, Peng D, Luo J, Liu E, Luo Z, Dai J, et al. Clinical features of airway malacia in children: a retrospective analysis of 459 patients. Int J Clin Exp Med. 2014;7(9):3005–12.

    PubMed  PubMed Central  Google Scholar 

  56. Baxter JD, Dunbar JS. Tracheomalacia. Ann Otol Rhinol Laryngol. 1963;72:1013–23.

    Article  CAS  PubMed  Google Scholar 

  57. Panitch HB, Keklikian EN, Motley RA, Wolfson MR, Schidlow DV. Effect of altering smooth muscle tone on maximal expiratory flows in patients with tracheomalacia. Pediatr Pulmonol. 1990;9(3):170–6.

    Article  CAS  PubMed  Google Scholar 

  58. Bass R, Santiago M, Smith L, Quinlan C, Panitch H, Giordano T, et al. Bethanechol in tracheomalacia: two case series and a review of the literature. Pediatr Allergy Immunol Pulmonol. 2018;31(3):180–3.

    Article  Google Scholar 

  59. Patel HJ, Barnes PJ, Takahashi T, Tadjkarimi S, Yacoub MH, Belvisi MG. Evidence for prejunctional muscarinic autoreceptors in human and Guinea pig trachea. Am J Respir Crit Care Med. 1995;152(3):872–8.

    Article  CAS  PubMed  Google Scholar 

  60. Hofhuis W, van der Wiel EC, Tiddens HA, Brinkhorst G, Holland WP, de Jongste JC, et al. Bronchodilation in infants with malacia or recurrent wheeze. Arch Dis Child. 2003;88(3):246–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wagner BP, Birrer P, Tonz M, Tschappeler H, Pfenninger J. Bronchodilator responsiveness in a ventilator-dependent infant with severe tracheobronchomalacia. Intensive Care Med. 1999;25(7):729–32.

    Article  CAS  PubMed  Google Scholar 

  62. Santiago-Burruchaga M, Zalacain-Jorge R, Vazquez-Cordero C. Are airways structural abnormalities more frequent in children with recurrent lower respiratory tract infections? Respir Med. 2014;108(5):800–5.

    Article  PubMed  Google Scholar 

  63. Zgherea D, Pagala S, Mendiratta M, Marcus MG, Shelov SP, Kazachkov M. Bronchoscopic findings in children with chronic wet cough. Pediatrics. 2012;129(2):e364–9.

    Article  PubMed  Google Scholar 

  64. Kompare M, Weinberger M. Protracted bacterial bronchitis in young children: association with airway malacia. J Pediatr. 2012;160(1):88–92.

    Article  PubMed  Google Scholar 

  65. Thomas R, Chang A, Masters IB, Grimwood K, Marchant J, Yerkovich S, et al. Association of childhood tracheomalacia with bronchiectasis: a case-control study. Arch Dis Child. 2022;107(6):565–9.

    Article  PubMed  Google Scholar 

  66. Sirithangkul S, Ranganathan S, Robinson PJ, Robertson CF. Positive expiratory pressure to enhance cough effectiveness in tracheomalacia. J Med Assoc Thail. 2010;93(Suppl 6):S112–8.

    Google Scholar 

  67. Boogaard R, de Jongste JC, Vaessen-Verberne AA, Hop WC, Merkus PJ. Recombinant human DNase in children with airway malacia and lower respiratory tract infection. Pediatr Pulmonol. 2009;44(10):962–9.

    Article  PubMed  Google Scholar 

  68. Tarrant BJ, Le Maitre C, Romero L, Steward R, Button BM, Thompson BR, et al. Mucoactive agents for chronic, non-cystic fibrosis lung disease: a systematic review and meta-analysis. Respirology. 2017;22(6):1084–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Hysinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hysinger, E.B., Zak, S.M. (2024). Diagnostic Approach to Tracheomalacia and Medical Management. In: Rosen, R., Rutter, M., Boesch, P. (eds) Pediatric Aerodigestive Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-86354-8_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86354-8_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86354-8

  • Online ISBN: 978-3-030-86354-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics