Skip to main content

MiikeMineStamps: A Long-Tailed Dataset of Japanese Stamps via Active Learning

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Abstract

Mining existing image datasets with rich information can help advance knowledge across domains in the humanities and social sciences. In the past, the extraction of this information was often prohibitively expensive and labor-intensive. AI can provide an alternative, making it possible to speed up the labeling and mining of large and specialized datasets via a human-in-the-loop method of active learning (AL). Although AL methods are helpful for certain scenarios, they present limitations when the set of classes is not known before labeling (i.e. an open-ended set) and the distribution of objects across classes is highly unbalanced (i.e. a long-tailed distribution). To address these limitations in object detection scenarios we propose a multi-step approach consisting of 1) object detection of a generic “object” class, and 2) image classification with an open class set and a long tail distribution. We apply our approach to recognizing stamps in a large compendium of historical documents from the Japanese company Mitsui Mi’ike Mine, one of the largest business archives in modern Japan that spans half a century, includes tens of thousands of documents, and has been widely used by labor historians, business historians, and others. To test our approach we produce and make publicly available the novel and expert-curated MiikeMineStamps dataset. This unique dataset consists of 5056 images of 405 different Japanese stamps, which to the best of our knowledge is the first published dataset of historical Japanese stamps. We hope that the MiikeMineStamps dataset will become a useful tool to further explore the application of AI methods to the study of historical documents in Japan and throughout the world of Chinese characters, as well as serve as a benchmark for image classification algorithms with an open-ended and highly unbalanced class set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghdam, H.H., González-García, A., van de Weijer, J., López, A.M.: Active learning for deep detection neural networks. In: ICCV, pp. 3671–3679 (2019)

    Google Scholar 

  2. Beluch, W.H., Genewein, T., Nurnberger, A., Kohler, J.M.: The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377 (2018). https://doi.org/10.1109/CVPR.2018.00976

  3. Buitrago, P.A., Nystrom, N.A.: Neocortex and bridges-2: a high performance AI+HPC ecosystem for science, discovery, and societal good. In: Nesmachnow, S., Castro, H., Tchernykh, A. (eds.) High Performance Computing, pp. 205–219. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  4. Clanuwat, T., Lamb, A., Kitamoto, A.: KuroNet: pre-modern Japanese Kuzushiji character recognition with deep learning. In: ICDAR, pp. 607–614 (2019)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) ICML, vol. 70, pp. 1126–1135 (2017)

    Google Scholar 

  8. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. ICML 70, 1183–1192 (2017)

    Google Scholar 

  9. Geifman, Y., El-Yaniv, R.: Deep active learning over the long tail (2017)

    Google Scholar 

  10. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. CalTech Report, March 2007

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  12. Kao, C.-C., Lee, T.-Y., Sen, P., Liu, M.-Y.: Localization-aware active learning for object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 506–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_32

    Chapter  Google Scholar 

  13. Krishna, R., et al.: The visual genome dataset v1.0 + v1.2 images. https://visualgenome.org/

  14. Krishnamurthy, A., Agarwal, A., Huang, T.K., Daume, H., III., Langford, J.: Active learning for cost-sensitive classification. JMLR 20(65), 1–50 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced Research)

    Google Scholar 

  16. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007 (2017)

    Google Scholar 

  17. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  19. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)

    Google Scholar 

  20. Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: a uniquely flexible HPC resource for new communities and data analytics. In: XSEDE 2015: Scientific Advancements Enabled by Enhanced Cyberinfrastructure (2015). https://doi.org/10.1145/2792745.2792775

  21. Qu, Z., Du, J., Cao, Y., Guan, Q., Zhao, P.: Deep active learning for remote sensing object detection (2020)

    Google Scholar 

  22. Roy, S., Unmesh, A., Namboodiri, V.: Deep active learning for object detection. In: BMVC (2019)

    Google Scholar 

  23. Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)

    Article  Google Scholar 

  24. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. CoRR abs/1503.03832 (2015)

    Google Scholar 

  25. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (2018)

    Google Scholar 

  26. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: ICCV, pp. 5971–5980 (2019). https://doi.org/10.1109/ICCV.2019.00607

  27. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. NIPS 30, 4077–4087 (2017)

    Google Scholar 

  28. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR, pp. 1701–1708 (2014). https://doi.org/10.1109/CVPR.2014.220

  29. Toropov, E., Buitrago, P.A., Moura, J.M.F.: Shuffler: A large scale data management tool for machine learning in computer vision. In: PEARC (2019)

    Google Scholar 

  30. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J., Wilkins-Diehr, N.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(05), 62–74 (2014). https://doi.org/10.1109/MCSE.2014.80

    Article  Google Scholar 

  31. Villalonga, G., Lopez, A.M.: Co-training for on-board deep object detection (2020)

    Google Scholar 

  32. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, k., Wierstra, D.: Matching networks for one shot learning. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS, vol. 29, pp. 3630–3638 (2016)

    Google Scholar 

  33. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2017). https://doi.org/10.1109/TCSVT.2016.2589879

    Article  Google Scholar 

  34. Wang, Y., Yao, Q., Kwok, J., Ni, L.: Few-shot learning: a survey. arXiv preprint arXiv:1904.05046 (2019)

  35. Xia, G., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: CVPR, pp. 3974–3983 (2018). https://doi.org/10.1109/CVPR.2018.00418

  36. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: CVPR, pp. 3530–3538 (2017)

    Google Scholar 

  37. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: CVPR, pp. 93–102 (2019). https://doi.org/10.1109/CVPR.2019.00018

  38. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: CVPR, pp. 4457–4465 (2017). https://doi.org/10.1109/CVPR.2017.474

Download references

Acknowledgements

This work used the Extreme Science and Engineering Discovery Environment (XSEDE) which is supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges and Bridges-2 systems, which is supported by NSF award number ACI-1445606 and ACI-1928147, at the Pittsburgh Supercomputing Center (PSC) [3, 20, 30]. The work was made possible through the XSEDE Extended Collaborative Support Service (ECSS) program.

We are grateful to the Mitsui Archives for giving us permission to reproduce their documents and publish the stamps.

Finally, this work would not have been possible without the expert labeling and assistance of Ms. Mieko Ueda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Toropov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buitrago, P.A., Toropov, E., Prabha, R., Uran, J., Adal, R. (2021). MiikeMineStamps: A Long-Tailed Dataset of Japanese Stamps via Active Learning. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86334-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86333-3

  • Online ISBN: 978-3-030-86334-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics