Skip to main content

Clinical Application of iPSC-Derived Cardiomyocytes in Patients with Advanced Heart Failure

  • Chapter
  • First Online:
Advanced Technologies in Cardiovascular Bioengineering

Abstract

Restoration of damaged cardiac tissues via supplementation with functional cardiomyocytes is an ideal medical treatment for advanced heart failure. Because human induced pluripotent stem cells (hiPSCs) can theoretically reproduce all kinds of cells from the patients themselves, their derivatives are expected to aid in the repair or replacement in these dysfunctional tissues. To improve cardiac function, a large number of cardiomyocytes must be prepared and transplanted into the damaged heart. Thus, large-scale cell culture systems are necessary for both clinical and industrial applications. In addition, the development of tumors, produced by any residual undifferentiated stem cells, should be avoided to prevent their deleterious effects. This means that efficient differentiation and purification methods are critical to the clinical application of hiPSCs. Transplantation strategies are also critical to the efficient retention and engraftment of cardiomyocytes and should be designed to minimize unwanted immunogenic effects preventing inflammation and immunological rejection and facilitating long-term engraftment. Arrhythmogenicity is also often described in middle-large animal models making this a critical functional issue that should be addressed before moving into human patients. Continued investigation and application of findings is sure to facilitate the successful clinical application of hiPSC-derived cardiomyocytes in the treatment of advanced heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodlin, S.J.: Palliative care in congestive heart failure. J. Am. Coll. Cardiol. 54(5), 386–396 (2009). https://doi.org/10.1016/j.jacc.2009.02.078

    Article  Google Scholar 

  2. Khush, K.K., Cherikh, W.S., Chambers, D.C., Harhay, M.O., Hayes Jr., D., Hsich, E., et al.: The international thoracic organ transplant registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report - 2019; focus theme: donor and recipient size match. J. Heart Lung Transplant. 38(10), 1056–1066 (2019). https://doi.org/10.1016/j.healun.2019.08.004

    Article  Google Scholar 

  3. Miller, L., Birks, E., Guglin, M., Lamba, H., Frazier, O.H.: Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ. Res. 124(11), 1658–1678 (2019). https://doi.org/10.1161/CIRCRESAHA.119.313574

    Article  Google Scholar 

  4. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3), 407–414 (2001). https://doi.org/10.1172/JCI12131

    Article  Google Scholar 

  5. Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., et al.: Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104(4), e30–e41 (2009). https://doi.org/10.1161/circresaha.108.192237

    Article  Google Scholar 

  6. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131(5), 861–872 (2007). https://doi.org/10.1016/j.cell.2007.11.019

    Article  Google Scholar 

  7. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., et al.: Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376(11), 1038–1046 (2017). https://doi.org/10.1056/NEJMoa1608368

    Article  Google Scholar 

  8. Takahashi, J.: iPS cell-based therapy for Parkinson's disease: a Kyoto trial. Regen. Ther. 13, 18–22 (2020). https://doi.org/10.1016/j.reth.2020.06.002

    Article  Google Scholar 

  9. Umekage, M., Sato, Y., Takasu, N.: Overview: an iPS cell stock at CiRA. Inflamm. Regen. 39, 17 (2019). https://doi.org/10.1186/s41232-019-0106-0

    Article  Google Scholar 

  10. Kempf, H., Andree, B., Zweigerdt, R.: Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv. Drug Deliv. Rev. 96, 18–30 (2016). https://doi.org/10.1016/j.addr.2015.11.016

    Article  Google Scholar 

  11. Tohyama, S., Fujita, J., Fujita, C., Yamaguchi, M., Kanaami, S., Ohno, R., et al.: Efficient large-scale 2D culture system for human induced pluripotent stem cells and differentiated cardiomyocytes. Stem Cell Rep. 9(5), 1406–1414 (2017). https://doi.org/10.1016/j.stemcr.2017.08.025

    Article  Google Scholar 

  12. Terao, Y., Kurashina, Y., Tohyama, S., Fukuma, Y., Fukuda, K., Fujita, J., et al.: An effective detachment system for human induced pluripotent stem cells cultured on multilayered cultivation substrates using resonance vibrations. Sci. Rep. 9(1), 15655 (2019). https://doi.org/10.1038/s41598-019-51944-w

    Article  Google Scholar 

  13. Kasai, K., Tohyama, S., Suzuki, H., Tanosaki, S., Fukuda, K., Fujita, J., et al.: Cost-effective culture of human induced pluripotent stem cells using UV/ozone-modified culture plastics with reduction of cell-adhesive matrix coating. Mater. Sci. Eng. C Mater. Biol. Appl. 111, 110788 (2020). https://doi.org/10.1016/j.msec.2020.110788

    Article  Google Scholar 

  14. Someya, S., Tohyama, S., Kameda, K., Tanosaki, S., Morita, Y., Sasaki, K., et al.: Tryptophan metabolism regulates proliferative capacity of human pluripotent stem cells. iScience. 24(2), 102090 (2021). https://doi.org/10.1016/j.isci.2021.102090

    Article  Google Scholar 

  15. Buikema, J.W., Lee, S., Goodyer, W.R., Maas, R.G., Chirikian, O., Li, G., et al.: Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 27(1), 50–63. e5 (2020). https://doi.org/10.1016/j.stem.2020.06.001

    Article  Google Scholar 

  16. Tohyama, S., Hattori, F., Sano, M., Hishiki, T., Nagahata, Y., Matsuura, T., et al.: Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 12(1), 127–137 (2013). https://doi.org/10.1016/j.stem.2012.09.013

    Article  Google Scholar 

  17. Tohyama, S., Fujita, J., Hishiki, T., Matsuura, T., Hattori, F., Ohno, R., et al.: Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab. 23(4), 663–674 (2016). https://doi.org/10.1016/j.cmet.2016.03.001

    Article  Google Scholar 

  18. Tanosaki, S., Tohyama, S., Fujita, J., Someya, S., Hishiki, T., Matsuura, T., et al.: Fatty acid synthesis is indispensable for survival of human pluripotent stem cells. iScience. 23(9), 101535 (2020). https://doi.org/10.1016/j.isci.2020.101535

    Article  Google Scholar 

  19. Shiba, Y., Fernandes, S., Zhu, W.Z., Filice, D., Muskheli, V., Kim, J., et al.: Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 489(7415), 322–325 (2012). https://doi.org/10.1038/nature11317

    Article  Google Scholar 

  20. Hattan, N., Kawaguchi, H., Ando, K., Kuwabara, E., Fujita, J., Murata, M., et al.: Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc. Res. 65(2), 334–344 (2005). https://doi.org/10.1016/j.cardiores.2004.10.004

    Article  Google Scholar 

  21. Hattori, F., Chen, H., Yamashita, H., Tohyama, S., Satoh, Y.-S., Yuasa, S., et al.: Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Meth. 7(1), 61–66 (2010) http://www.nature.com/nmeth/journal/v7/n1/suppinfo/nmeth.1403_S1.html

    Article  Google Scholar 

  22. Tabei, R., Kawaguchi, S., Kanazawa, H., Tohyama, S., Hirano, A., Handa, N., et al.: Development of a transplant injection device for optimal distribution and retention of human induced pluripotent stem cellderived cardiomyocytes. J. Heart Lung Transplant. 38(2), 203–214 (2019). https://doi.org/10.1016/j.healun.2018.11.002

    Article  Google Scholar 

  23. Nakajima, K., Fujita, J., Matsui, M., Tohyama, S., Tamura, N., Kanazawa, H., et al.: Gelatin hydrogel enhances the engraftment of transplanted cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction. PLoS One. 10(7), e0133308 (2015). https://doi.org/10.1371/journal.pone.0133308

    Article  Google Scholar 

  24. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al.: Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50(19), 1884–1893 (2007). https://doi.org/10.1016/j.jacc.2007.07.054

    Article  Google Scholar 

  25. Kawaguchi, S., Soma, Y., Nakajima, K., Kanazawa, H., Tohyama, S., Tabei, R., et al.: Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC: Basic Trans. Sci. 6(3), 239–254 (2021). https://doi.org/10.1016/j.jacbts.2020.11.017

  26. Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., et al.: Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 538(7625), 388–391 (2016). https://doi.org/10.1038/nature19815

    Article  Google Scholar 

  27. Fukushima, N., Ono, M., Saiki, Y., Sawa, Y., Nunoda, S., Isobe, M.: Registry report on heart transplantation in Japan (June 2016). Circ. J. 81(3), 298–303 (2017). https://doi.org/10.1253/circj.CJ-16-0976

    Article  Google Scholar 

  28. Veerman, C.C., Mengarelli, I., Lodder, E.M., Kosmidis, G., Bellin, M., Zhang, M., et al.: Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived cardiomyocytes unmasks the cellular phenotype of a conduction disease-causing mutation. J. Am. Heart Assoc. 6(7) (2017). https://doi.org/10.1161/JAHA.116.005135

  29. Doss, M.X., Di Diego, J.M., Goodrow, R.J., Wu, Y., Cordeiro, J.M., Nesterenko, V.V., et al.: Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr). PLoS One. 7(7), e40288 (2012). https://doi.org/10.1371/journal.pone.0040288

    Article  Google Scholar 

  30. Liu, J., Fu, J.D., Siu, C.W., Li, R.A.: Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells. 25(12), 3038–3044 (2007). https://doi.org/10.1634/stemcells.2007-0549

    Article  Google Scholar 

  31. Ansari, D., Bucin, D., Nilsson, J.: Human leukocyte antigen matching in heart transplantation: systematic review and meta-analysis. Transpl. Int. 27(8), 793–804 (2014). https://doi.org/10.1111/tri.12335

    Article  Google Scholar 

  32. Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., et al.: A more efficient method to generate integration-free human iPS cells. Nat. Methods. 8(5), 409–412 (2011). https://doi.org/10.1038/nmeth.1591

    Article  Google Scholar 

  33. Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., et al.: Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37(3), 252–258 (2019). https://doi.org/10.1038/s41587-019-0016-3

    Article  Google Scholar 

  34. Mattapally, S., Pawlik, K.M., Fast, V.G., Zumaquero, E., Lund, F.E., Randall, T.D., et al.: Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart Assoc. 7(23), e010239 (2018). https://doi.org/10.1161/JAHA.118.010239

    Article  Google Scholar 

  35. Wang, D., Quan, Y., Yan, Q., Morales, J.E., Wetsel, R.A.: Targeted disruption of the beta2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl. Med. 4(10), 1234–1245 (2015). https://doi.org/10.5966/sctm.2015-0049

    Article  Google Scholar 

  36. Gornalusse, G.G., Hirata, R.K., Funk, S.E., Riolobos, L., Lopes, V.S., Manske, G., et al.: HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35(8), 765–772 (2017). https://doi.org/10.1038/nbt.3860

    Article  Google Scholar 

  37. Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., et al.: Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell. 24(4), 566–578. e7 (2019). https://doi.org/10.1016/j.stem.2019.02.005

    Article  Google Scholar 

  38. Li, Y., Zeng, H., Xu, R.H., Liu, B., Li, Z.: Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells. 27(12), 3103–3111 (2009). https://doi.org/10.1002/stem.234

    Article  Google Scholar 

  39. Kooreman, N.G., Kim, Y., de Almeida, P.E., Termglinchan, V., Diecke, S., Shao, N.Y., et al.: Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell. 22(4), 501–513. e7 (2018). https://doi.org/10.1016/j.stem.2018.01.016

    Article  Google Scholar 

  40. Okada, M., Tada, Y., Seki, T., Tohyama, S., Fujita, J., Suzuki, T., et al.: Selective elimination of undifferentiated human pluripotent stem cells using pluripotent state-specific immunogenic antigen Glypican-3. Biochem. Biophys. Res. Commun. 511(3), 711–717 (2019). https://doi.org/10.1016/j.bbrc.2019.02.094

    Article  Google Scholar 

  41. Chong, J.J., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers, J.J., et al.: Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 510(7504), 273–277 (2014). https://doi.org/10.1038/nature13233

    Article  Google Scholar 

  42. Romagnuolo, R., Masoudpour, H., Porta-Sanchez, A., Qiang, B., Barry, J., Laskary, A., et al.: Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular Tachyarrhythmias. Stem Cell Rep. 12(5), 967–981 (2019). https://doi.org/10.1016/j.stemcr.2019.04.005

    Article  Google Scholar 

  43. Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., et al.: Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 126(11 Suppl 1), S29–S37 (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.084343

    Article  Google Scholar 

  44. Ye, L., Chang, Y.H., Xiong, Q., Zhang, P., Zhang, L., Somasundaram, P., et al.: Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 15(6), 750–761 (2014). https://doi.org/10.1016/j.stem.2014.11.009

    Article  Google Scholar 

  45. Stein, J.M., Mummery, C.L., Bellin, M.: Engineered models of the human heart: directions and challenges. Stem Cell Rep. (2020). https://doi.org/10.1016/j.stemcr.2020.11.013

  46. Hofer, M., Lutolf, M.P.: Engineering organoids. Nat. Rev. Mater., 1–19 (2021). https://doi.org/10.1038/s41578-021-00279-y

  47. Lee, J., Sutani, A., Kaneko, R., Takeuchi, J., Sasano, T., Kohda, T., et al.: In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat. Commun. 11(1), 4283 (2020). https://doi.org/10.1038/s41467-020-18031-5

    Article  Google Scholar 

  48. Giacomelli, E., Meraviglia, V., Campostrini, G., Cochrane, A., Cao, X., van Helden, R.W.J., et al.: Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell. 26(6), 862–879. e11 (2020). https://doi.org/10.1016/j.stem.2020.05.004

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid of Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (19H03660 [to Dr. Fujita]). Drs. Fujita, Tohyama, Kanazawa, and Fukuda all retain patents related to this work. Drs. Fujita, Tohyama, Kanazawa, and Fukuda own equity in Heartseed, Inc. Dr. Tohyama is an advisor of Heartseed, Inc. and Dr. Fukuda is the co-founder and CEO of Heartseed, Inc., and receives a salary from Heartseed, Inc. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujita, J. et al. (2022). Clinical Application of iPSC-Derived Cardiomyocytes in Patients with Advanced Heart Failure. In: Zhang, J., Serpooshan, V. (eds) Advanced Technologies in Cardiovascular Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-86140-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86140-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86139-1

  • Online ISBN: 978-3-030-86140-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics