Skip to main content

Antihypertensive Therapies

  • Chapter
  • First Online:
Diabetes and Kidney Disease
  • 966 Accesses

Abstract

Classically, diabetic kidney disease was diagnosed as >300 mg/d of proteinuria in a person with a 10-year history of diabetes mellitus. Kidney biopsy and 24-hour urine collections are now seldom used to monitor such patients, but the lessons of clinical trials performed in the last millennium still hold. Strict glycemic control (e.g., A1c < 7%) has its most impressive impact on preventing diabetic kidney disease in people with type 1 diabetes but continues to be recommended for people with type 2 diabetes. Inhibitors of the renin-angiotensin system prevent both albuminuria and progressive decline in kidney function in people with diabetes, independently of their blood pressure-lowering effects. Before ACE inhibitors, blood pressure-lowering drugs (e.g., diuretics, beta-blockers, and vasodilators) showed similar, albeit probably smaller, beneficial effects on these parameters. Restriction of dietary protein and sodium to reduce albuminuria and/or slow loss of kidney function is often difficult to execute and is less “evidence-based.” Emerging evidence from clinical trials shows that sodium-glucose linked transporter-2 inhibitors can prevent progression of albuminuria and the descent of kidney function to end-stage kidney disease; at least two such agents have received an FDA indication for this. Currently, data are less compelling for glucagon-like peptide-1 agonists, but this may change with ongoing research. Some challenges in this arena include the intrinsic variability of albumin excretion, the many years between the onset of persistent albuminuria and end-stage kidney disease (in the 20–40% of people with type 1 diabetes who develop it), and the competing risk of morbidity and mortality from other causes (especially in people with type 2 diabetes) before end-stage kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association. Executive summary: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Suppl. 1):S1–S212.

    Google Scholar 

  2. Hassalacher C, Ritz E, Wahl P, Michale C. Similar risk of nephropathy in patients with type I or type II diabetes mellitus. Nephrol Dial Transplant. 1989;4:859–63.

    Article  Google Scholar 

  3. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2020;98:S1–S115.

    Article  Google Scholar 

  4. Stevens PE. Levin a, for the kidney disease: improving global outcomes chronic kidney disease guideline development work group members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.

    Article  PubMed  Google Scholar 

  5. Perkins BA, Ficociello LH, Silva KN, Finklestein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348:2285–93.

    Article  CAS  PubMed  Google Scholar 

  6. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT, Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet. 2010;375:2073–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, Jong PE, Coresh J, Chronic Kidney Disease Prognosis Consortium. Lower estimated glomerular filtration rate and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80:93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: The HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.

    Article  Google Scholar 

  9. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  10. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complication Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  11. The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the diabetes control and complications trial. Kidney Int. 1995;47:1703–20.

    Article  Google Scholar 

  12. de Boer IH, Gao X, Cleary PA, Bebu I, Lachin JM, Molitch ME, Orchard T, Paterson AD, Perkins BA, Steffes MW, Zinman B. For the DCCT/EDIC research group. Albuminuria changes and cardiovascular and renal outcomes in type 1 diabetes: the DCCT/EDIC study. Clin J Am Soc Nephrol. 2016;11:1969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reichard P, Nilsson BY, Rosengvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993;329:304–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of intensive blood-glucose control on late complications of type 1 diabetes. Lancet. 1993;341:1306–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339:69–75.

    Article  CAS  PubMed  Google Scholar 

  16. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med. 2012;172:761–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT, Action to Control Cardiovascular Risk in type 2 Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  CAS  PubMed  Google Scholar 

  18. Strippoli GFM, Bonifati C, Craig M, Navaneethan SD, Craig JC. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006;2006(4):CD006257.

    PubMed Central  Google Scholar 

  19. Maione A, Navaneethan SD, Graziano G, Mitchell R, Johnson D, Mann JFE, Gao P, Craig JC, Tognoni G, Perkovic V, Nicolucci A, De Cosmo S, Sasso A, Lamacchia O, Cignarelli M, Manfreda VM, Gentile G, Strippoli GFM. Angiotensin-converting enzyme inhibitor, angiotensin receptor blockers, and combined therapy in patients with micro- and macroalbuminuria and other cardiovascular risk factors: a systematic review of randomized controlled trials. Nephrol Dial Transplant. 2011;26:2827–47.

    Article  CAS  PubMed  Google Scholar 

  20. Lv J, Perkovic V, Foote CV, Craig ME, Craig JC, Strippoli GF. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2012;12:CD004136.

    PubMed  Google Scholar 

  21. Parving H-H, Hommel E, Dankjaer Nielsen M, Giese J. Effect of captopril on blood pressure and kidney function in normotensive insulin dependent diabetics with nephropathy. BMJ. 1989;299:533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Romero R, Salinas I, Lucas A, Abad E, Reverter JL, Johnston S, Sanmarti A. Renal function changes in microalbuminuric normotensive type II diabetic patients treated with angiotensin-converting enzyme inhibitors. Diabetes Care. 1993;16:597–600.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The captopril collaborative study group. N Engl J Med. 1993;329:1456–62.

    Article  CAS  PubMed  Google Scholar 

  24. Ravid M, Savin H, Jutrin I, Bental T, Lang R, Lishner M. Long-term effect of ACE inhibition on development of nephropathy in diabetes mellitus type II. Kidney Int. 1994;45(Suppl. 45):S161–4.

    CAS  Google Scholar 

  25. Capek M, Schnack C, Ludvik B, Kautzky-Willer A, Banyai M, Prager R. Effects of captopril treatment versus placebo on renal function in type 2 diabetic patients with microalbuminuria: a long-term study. Clin Invest. 1994;72:961–6.

    Article  CAS  Google Scholar 

  26. Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, Ponticelli C, Ritz E, Zucchelli P. Effect of angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The angiotensin-converting-enzyme inhibition in progressive renal insufficiency study group. N Engl J Med. 1996;334:939–45.

    Article  CAS  PubMed  Google Scholar 

  27. Katayama S, Kikkawa R, Isogai S, Sasaki N, Matsuura N, Tajima N, Urakami T, Uchigata Y, Ohashi Y. Effect of capropril or imidapril on the progression of diabetic nephropathy in Japanese with type 1 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Care Clin Pract. 2002;55:113–21.

    Article  CAS  Google Scholar 

  28. Marre M, Lievre M, Chatellier G, Mann GFE, Passa P, Ménard J, DIABHYCAR Study Investigators. Effects of low-dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: Randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ. 2004;328:495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marre M, Leblanc H, Suarez L, Guyenne TT, Ménard J, Passa P. Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. BMJ (Clin Res). 1987;294:1448–52.

    Article  CAS  Google Scholar 

  30. Ravid M, Savin H, Jutrin I, Bental T, Katz B, Lishner M. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med. 1993;118:577–81.

    Article  CAS  PubMed  Google Scholar 

  31. Chase HP, Garg SK, Harris S, Hoops S, Jackson WE, Holmes DL. Angiotensin-converting enzyme inhibitor treatment for young normotensive diabetic subjects: a two-year trial. Ann Ophthalmol. 1993;25:284–9.

    CAS  PubMed  Google Scholar 

  32. Hansen KW, Klein F, Christensen PD, Sørensen K, Andersen PH, Møller J, Pedersen EB, Christiansen JS, Mogensen CE. Effects of captopril on ambulatory blood pressure, renal and cardiac function in microalbuminuric type 1 diabetic patients. Diabete Metab. 1994;20:485–93.

    CAS  PubMed  Google Scholar 

  33. No Authors Listed. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet. 1997;349:1787–92.

    Article  Google Scholar 

  34. Ahmad J, Siddiqui MA, Ahmad H. Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes Care. 1997;20:1576–81.

    Article  CAS  PubMed  Google Scholar 

  35. Crepaldi G, Carta Q, Deferrari G, Mangili R, Navalesi R, Santeusanio F, Spalluto A, Vanasia A, Villa GM, Nosadini R. Effects of lisinopril and nifedipine on progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian microalbuminuria study group in IDDM. Diabetes Care. 1998;21:104–10.

    Article  CAS  PubMed  Google Scholar 

  36. Mathiesen ER, Hommel E, Hansen HP, Smidt UM, Parving H-H. Randomised controlled trial of long term efficacy of captopril on preservation of kidney function in normotensive patients with insulin dependent diabetes and microalbuminuria. BMJ. 1999;319:24–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muirhead N, Feagan BF, Mahon J, Lewanczuk RZ, Rodger NW, Botteri F, Oddou-Stock P, Pecher E, Cheung R. The effects of valsartan and captopril on reducing microalbuminuria in patients with type 2 diabetes mellitus: a placebo-controlled trial. Curr Ther Res. 1999;60:650–60.

    Article  CAS  Google Scholar 

  38. O’Hare P, Bilbous R, Mitchell T, O’Callaghan CJ, Viberti GC, ACE-Inhibitor Trial to Lower Albuminuria in Normotensive Insulin-Dependent Subjects Study Group. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients with hypertension: results of a randomized clinical trial. Diabetes Care. 2000;23:1823–9.

    Article  PubMed  Google Scholar 

  39. Bojestig M, Karlberg BE, Liindström T, Nystrom FH. Reduction of ACE activity is insufficient to decrease microalbuminuria in normotensive patients with type 1 diabetes. Diabetes Care. 2001;24:919–24.

    Article  CAS  PubMed  Google Scholar 

  40. Jerums G, Allen TJ, Campbell DJ, Cooper ME, Gilbert RE, Hammond JJ, Raffaele J, Tsalamandris C. Long-term comparison between perindopril and nifedipine in normotensive patients with type 1 diabetes and microalbuminuria. Am J Kidney Dis. 2001;37:890–9.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmad J, Shafique S, Abbas Abidi SM, Parwez I. Effect of 5-year enalapril therapy on progression of microalbuminuria and glomerular structural changes in type 1 diabetic subjects. Diabetes Res Clin Pract. 2003;60:131–8.

    Article  CAS  PubMed  Google Scholar 

  42. Jerums G, Allen TJ, Campbell DJ, Cooper ME, Gilbert RE, Hammond JJ, O’Brien RC, Raffaele J, Tsalamandris C, Melbourne Diabetic Nephropathy Study Group. Long-term renoprotection by perindopril or nifedipine in non-hypertensive patients with Type 2 diabetes and microalbuminuria. Diabet Med. 2004;21:1192–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wilmer WA, Hebert LA, Lewis EJ, Rohde RD, Whittier F, Cattran D, Levey AS, Lewis JB, Spitalewitz S, Blumenthal S, Bain RP. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the captopril study. Am J Kidney Dis. 1999;34:308–14.

    Article  CAS  PubMed  Google Scholar 

  44. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. Collaborative study group. N Engl J Med. 2001;345:851–60.

    Article  CAS  PubMed  Google Scholar 

  45. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, Remuzzi G, Snapinn SM, Zhang G, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. Reduction of endpoints in non-insulin dependent diabetes mellitus with the angiotensin II antagonist losartan (RENAAL) study group. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  46. Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009;20:2641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Imai E, Chan JC, Ito S, Yamasaki T, Kobayashi F, Haneda M, Makino H, ORIENT Study Investigators. Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: A multicenter, randomised, placebo-controlled study. Diabetologia. 2011;54:2978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parving H-H, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. The Irbesartan in patients with type 2 diabetes and microalbuminuria study group. N Engl J Med. 2001;345:870–8.

    Article  CAS  PubMed  Google Scholar 

  49. Tan KCB, Chow W-S, Ai HVG, Lam KSL. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes Metab Res Rev. 2002;18:71–6.

    Article  CAS  PubMed  Google Scholar 

  50. Makino H, Haneda M, Babazono T, Moriya T, It S, Iwamoto Y, Kawamori R, Takeuchi M, Katayama S, INNOVATION Study Group. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007;30:1577–8.

    Article  CAS  PubMed  Google Scholar 

  51. Weil EJ, Fufaa G, Jones LI, Lovato T, Lemley KV, Hanson RL, Knowler W, Bennett P, Yee B, Myers B, Nelson R. Effect of losartan on prevention and progression of early diabetic nephropathy in American Indians with type 2 diabetes. Diabetes. 2013;62:3224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pohl MA, Blumenthal S, Cordonnier DJ, De Alvaro F, Deferrar G, Eisner G, Esmatjes E, Gilbert RE, Hunsicker LG, de Faria JB, Mangilli R, Moor J Jr, Reisin E, Ritz E, Schernthanaer G, Spitalewitz S, Tindall H, Rodby RA, Lewis EJ. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the Irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005;16:3027–37.

    Article  CAS  PubMed  Google Scholar 

  53. Bakris GL, Weir MR, Shanifar S, Zhang Z, Douglas J, van Dijk DJ, Brenner BM, RENAAL Study Group. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med. 2003;163:1555–65.

    Article  PubMed  Google Scholar 

  54. Andersen S, Bröchner-Mortensen J, Parving H-H. For the Irbesartan in patients with type 2 diabetes and microalbuminuria study group. Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care. 2003;26:3296–302.

    Article  PubMed  Google Scholar 

  55. Hellemons ME, Persson F, Bakker SJL, Rossing P, Parving H-H, de Zeeuw D, Lambers Heerspink HJ. Initial angiotensin receptor-blockade-induced decrease in albuminuria is associated with long-term renal outcome in type 2 diabetic patients with microalbuminuria: a post-hoc analysis of the IRMA-2 trial. Diabetes Care. 2011;34:2078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blacklock CL, Hirst JA, Taylor KS, Stevens RJ, Roberts NW, Farmer AJ. Evidence for a dose effect of renin-angiotensin system inhibition on progression of microalbuminuria in type 2 diabetes: a meta-analysis. Diabet Med. 2011;28:1182–7.

    Article  CAS  PubMed  Google Scholar 

  57. Keane WF, Brenner BM, de Zeeuw D, Grunfeld J-P, McGill J, Mitch WE, Ribeiro AB, Shahinfar S, Simpson RL, Snapinn SM, Toto R, RENAAL Study Investigators. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int. 2003;63:1499–507.

    Article  PubMed  Google Scholar 

  58. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361:40–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, Mimran A, Rabelinki TJ, Ritz E, Ruilope LM, Rump LC, Viberti G, ROADMAP Trial Investigators. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364:907–17.

    Article  CAS  PubMed  Google Scholar 

  60. Persson F, Lindhardt M, Rossing P, Parving H-H. Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: a systematic review. J Renin-Angiotensin-Aldosterone Syst. 2016;17:1470320316652047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Parving H-H, Persson F, Lewis JB, Lewis EJ, Hollenberg NK, AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358:2433–46.

    Article  CAS  PubMed  Google Scholar 

  62. Parving H-H, Brenner BM, McMurray JJV, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA, ALTITUDE Investigators. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.

    Article  CAS  PubMed  Google Scholar 

  63. Chung EYM, Ruospo M, Natale P, Bolignano D, Navaneethan SD, Palmer SC, Strippoli GFM. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020;10:CD007004.

    PubMed  Google Scholar 

  64. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, Nowack C, Kolkhof P, Kim S-Y, Zannad F. Safety and tolerability of the novel nonsteroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease. Eur Heart J. 2013;34:2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, Kolkhof P, Joseph A, Pieper A, Kimmeskamp-Kirschbaum N, Ruilope LM, Mineralocorticoid receptor Antagonist Tolerability Study-Diabetic Nephropathy (ARTS-DN) Study Group. Effect of finerenone on albuminuria in patients with diabetic nephropathy: A randomized clinical trial. JAMA. 2015;314:884–94.

    Article  CAS  PubMed  Google Scholar 

  66. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G, FIDELIO-DKD Investigators. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020; epub before print 23 OCT 20; https://doi.org/10.1056/NEJMoa2025845.

  67. Mann JFE, Schmieder RE, McQueen M, Dyal L, Schumacher M, Pogue J, Wang X, Maggioni A, Budaj A, Chaithiraphan S, Dickstein K, Keltai M, Metsärinne K, Oto A, Parkhomenko A, Piegas LS, Svendsen TL, Teo KK, Yusuf S, ONTARGET Investigators. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372:547–53.

    Article  CAS  PubMed  Google Scholar 

  68. Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J, Mustonen J, Diabetics Exposed to Telmisartan and Enalapril Study Group. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351:1952–61.

    Article  CAS  PubMed  Google Scholar 

  69. Parving H-H, Andersen AR, Smidt UM, Hommel E, Mathiesen ER, Svendsen PA. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J (Clin Res). 1987;294:1443–7.

    Article  CAS  Google Scholar 

  70. Böhlen L, de Courten M, Wiedmann P. Comparative study of the effect of ACE-inhibitors and other antihypertensive agents on proteinuria in diabetic patients. Am J Hypertens. 1994;7(Suppl. 2):84S–92S.

    Article  PubMed  Google Scholar 

  71. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, Rubis N, Gherardi G, Arnoldi F, Ganeva M, Ene-Iordache B, Gaspari F, Perna A, Bossi A, Trevisan R, Dodesini AR, Remuzzi G, Bergamo Nephrologic Diabetes Complications Trial (BENEDICT) Investigators. Preventing microalbuminuria in type 2 diabetes. N Engl J Med. 2004;351:1941–51.

    Article  CAS  PubMed  Google Scholar 

  72. Walker JD, Bending JJ, Dodds RA, Mattock MB, Murrells TJ, Keen H, Viberti GC. Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet. 1989;2:1411–5.

    Article  CAS  PubMed  Google Scholar 

  73. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991;324:78–84.

    Article  CAS  PubMed  Google Scholar 

  74. Hansen HP, Tauber-Lassen E, Jensen BR, Parving H-H. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62:220–8.

    Article  PubMed  Google Scholar 

  75. Bakris GL, Smith A. Effects of sodium intake on albumin excretion in patients with diabetic nephropathy treated with long-acting calcium antagonists. Ann Intern Med. 1996;125:201–4.

    Article  CAS  PubMed  Google Scholar 

  76. Houlihan CA, Allen TJ, Baxter AL, Panangiotopoulos S, Casley DJ, Cooper ME, Jerums G. A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care. 2002;25:663–71.

    Article  CAS  PubMed  Google Scholar 

  77. Esnault VL, Ekhias A, Decroix C, Moutel MG, Nguyen JM. Diuretic and enhanced sodium restriction results in improved antiproteinuric response to RAS blocking agents. J Am Soc Nephrol. 2005;16:474–81.

    Article  CAS  PubMed  Google Scholar 

  78. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B, EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  PubMed  Google Scholar 

  79. Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, Barrett TD, Weidner-Wells M, Deng H, Matthews DR, Neal B. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704.

    Article  CAS  PubMed  Google Scholar 

  80. Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, Murphy SA, Heerspink HJL, Zelniker TA, Dwyer JP, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Kato ET, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS, Raz I. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–17.

    Article  CAS  PubMed  Google Scholar 

  81. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, Charbonnel B, Frederich R, Gallo S, Cosentino F, Shih WJ, Gantz I, Terra SG, DZI C, DK MG, VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35.

    Article  CAS  PubMed  Google Scholar 

  82. Perkovic V, Jardine MJ, Neal B, Bornpoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris GL, Bull S, Cannon CP, Capuano G, Chu P-L, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW, CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    Article  CAS  PubMed  Google Scholar 

  83. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7:845–54.

    Article  CAS  PubMed  Google Scholar 

  84. FDA Drug Safety Communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). Available on the internet at: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-strengthens-kidney-warnings-diabetes-medicines-danagliflozin. Posted 14 JUN 2016, Accessed 28 OCT 2020.

  85. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, JFE M, JJV MM, Lindberg M, Rossing P, Sjöström D, Toto RD, Langkilde A-M, Wheeler DC, DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  86. Jhund PS, Soloman SD, Docherty KF, HJL H, Anand IS, Böhm M, Chopra V, de Boer RA, Desai AS, Ge J, Kitakaze M, Merkely B, O’Meara E, Schou M, Tereshchenko S, Verma S, Nguyen Vinh P, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Bengtsson O, Langkilde AM, Sjöstrand M, JJV MM. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: results of DAPA-HF. Circulation. 2020; epub 12 OCT 20; https://doi.org/10.1161/CIRCULATIONAHA.120.050391.

  87. Zannad F. EMPEROR-Reduced: Empagliflozin and outcomes in heart failure and chronic kidney disease [Abstract FR-OR52]. Presented on 28 OCT 20 in Chicago, IL at Kidney Week 2020, the Annual Meeting of the American Society of Nephrology.

    Google Scholar 

  88. Kristensen SL, Rorth R, Jhund PS, Docherty KF, Sattar N, Preiss D, Køber L, Petrie MC, McMurray JJV. Cardiovascular, mortality and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7:776–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elliott, W.J. (2022). Antihypertensive Therapies. In: Lerma, E.V., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86020-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86020-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86019-6

  • Online ISBN: 978-3-030-86020-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics