Skip to main content

On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2021)

Abstract

Finding the minimum approximate ratio for Nash equilibrium of bi-matrix games has derived a series of studies, started with 3/4, followed by 1/2, 0.38 and 0.36, finally the best approximate ratio of 0.3393 by Tsaknakis and Spirakis (TS algorithm for short). Efforts to improve the results remain not successful in the past 14 years.

This work makes the first progress to show that the bound of 0.3393 is indeed tight for the TS algorithm. Next, we characterize all possible tight game instances for the TS algorithm. It allows us to conduct extensive experiments to study the nature of the TS algorithm and to compare it with other algorithms. We find that this lower bound is not smoothed for the TS algorithm in that any perturbation on the initial point may deviate away from this tight bound approximate solution. Other approximate algorithms such as Fictitious Play and Regret Matching also find better approximate solutions. However, the new distributed algorithm for approximate Nash equilibrium by Czumaj et al. performs consistently at the same bound of 0.3393. This proves our lower bound instances generated against the TS algorithm can serve as a benchmark in design and analysis of approximate Nash equilibrium algorithms.

H. Li—Main technical contributor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We follow [18] to define a stationary point for a strategy pair of the maximum value of two players’ deviations: It is one where the directional derivatives in all directions are non-negative. The formal definition is presented in Definition 2.

  2. 2.

    We will see in Remark 1 that finding a stationary point is not enough to reach a good approximation ratio; therefore the adjustment step is necessary.

  3. 3.

    Throughout the paper, we suppose that \((x, y), (x',y')\in \varDelta _m\times \varDelta _n\), and \(\rho \in [0, 1]\), \(w\in \varDelta _m\), \(\mathrm {supp}(w)\subseteq S_R(y)\), \(z\in \varDelta _n\), \(\mathrm {supp}(z)\subseteq S_C(x)\). These restrictions are omitted afterward for fluency.

  4. 4.

    The denominator of \(p^*\) or \(q^*\) may be zero. In this case, we simply define \(p^*\) or \(q^*\) to be 0.

  5. 5.

    One can verify that the value of \(\rho ^*\) in the dual solution of any tight stationary point has to be \(\mu _0/(\lambda _0+\mu _0)\), by the second part of Lemma 5.

References

  1. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equilibria in bimatrix games. Theor. Comput. Sci. 411(1), 164–173 (2010). https://doi.org/10.1016/j.tcs.2009.09.023

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Allocat. 13(1), 374–376 (1951)

    MathSciNet  MATH  Google Scholar 

  3. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player nash equilibria. J. ACM 56(3), 1–57 (2009). https://doi.org/10.1145/1516512.1516516

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z., Deng, X., Huang, W., Li, H., Li, Y.: On tightness of the Tsaknakis-Spirakis algorithm for approximate nash equilibrium. CoRR abs/2107.01471 (2021). https://arxiv.org/abs/2107.01471

  5. Conitzer, V.: Approximation guarantees for fictitious play. In: 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, September 2009. https://doi.org/10.1109/allerton.2009.5394918

  6. Czumaj, A., Deligkas, A., Fasoulakis, M., Fearnley, J., Jurdziński, M., Savani, R.: Distributed methods for computing approximate equilibria. Algorithmica 81(3), 1205–1231 (2018). https://doi.org/10.1007/s00453-018-0465-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009). https://doi.org/10.1137/070699652

    Article  MathSciNet  MATH  Google Scholar 

  8. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate nash equilibria. In: Proceedings of the 8th ACM Conference on Electronic Commerce - EC 2007. ACM Press (2007). https://doi.org/10.1145/1250910.1250962

  9. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate nash equilibria. Theore. Comput. Sci. 410(17), 1581–1588 (2009). https://doi.org/10.1016/j.tcs.2008.12.031

    Article  MathSciNet  MATH  Google Scholar 

  10. Fearnley, J., Igwe, T.P., Savani, R.: An empirical study of finding approximate equilibria in bimatrix games. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 339–351. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20086-6_26

    Chapter  Google Scholar 

  11. Feder, T., Nazerzadeh, H., Saberi, A.: Approximating nash equilibria using small-support strategies. In: Proceedings of the 8th ACM Conference on Electronic Commerce - EC 2007. ACM Press (2007). https://doi.org/10.1145/1250910.1250961

  12. Greenwald, A., Li, Z., Marks, C.: Bounds for regret-matching algorithms. In: International Symposium on Artificial Intelligence and Mathematics, ISAIM 2006, Fort Lauderdale, Florida, USA, 4–6 January 2006 (2006)

    Google Scholar 

  13. Kontogiannis, S.C., Panagopoulou, P.N., Spirakis, P.G.: Polynomial algorithms for approximating nash equilibria of bimatrix games. Theor. Comput. Sci. 410(17), 1599–1606 (2009). https://doi.org/10.1016/j.tcs.2008.12.033

    Article  MathSciNet  MATH  Google Scholar 

  14. Kontogiannis, S.C., Spirakis, P.G.: Efficient algorithms for constant well supported approximate equilibria in bimatrix games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 595–606. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_52

    Chapter  Google Scholar 

  15. Mangasarian, O.: Uniqueness of solution in linear programming. Linear Algebra Appl. 25, 151–162 (1979). https://doi.org/10.1016/0024-3795(79)90014-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Neumann, J.: Zur theorie der gesellschaftsspiele. Math. Ann. 100(1), 295–320 (1928). https://doi.org/10.1007/bf01448847

    Article  MathSciNet  MATH  Google Scholar 

  17. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994). https://doi.org/10.1016/S0022-0000(05)80063-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate nash equilibria. Internet Math. 5(4), 365–382 (2008). https://doi.org/10.1080/15427951.2008.10129172

    Article  MathSciNet  MATH  Google Scholar 

  19. Tsaknakis, H., Spirakis, P.G., Kanoulas, D.: Performance evaluation of a descent algorithm for bi-matrix games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 222–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_29

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by Science and Technology Innovation 2030 –“The Next Generation of Artificial Intelligence” Major Project No. (2018AAA0100901). We are grateful to Dongge Wang, Xiang Yan and Yurong Chen for their inspiring suggestions and comments. We thank a number of readers for their revision opinions. We are also grateful to anonymous reviewers for their kindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotie Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Deng, X., Huang, W., Li, H., Li, Y. (2021). On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium. In: Caragiannis, I., Hansen, K.A. (eds) Algorithmic Game Theory. SAGT 2021. Lecture Notes in Computer Science(), vol 12885. Springer, Cham. https://doi.org/10.1007/978-3-030-85947-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85947-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85946-6

  • Online ISBN: 978-3-030-85947-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics