Skip to main content

Wild Birds and Zoonotic Pathogens

Beware of the Fowl Feces

  • Living reference work entry
  • First Online:
Zoonoses: Infections Affecting Humans and Animals

Abstract

Wild birds are an extraordinarily diverse group of species that occupy a variety of ecological niches. Concerns about the ability of birds to transmit pathogenic organisms have arisen, mainly due to their ability to fly and travel long distances, as well as their tendency to gather and travel in flocks. This chapter will address the most relevant zoonotic agents and related public health risks associated with wild birds, including Salmonella, Campylobacter, Chlamydophila psittaci, and Escherichia coli, as well as agents for which wild birds may act as a reservoir species (e.g., West Nile virus), and zoonoses that may be acquired from direct exposure to or handling of wild birds (e.g., mites, ticks). Bacterial, viral, fungal, and parasitic zoonoses with a minor, theoretical, or potential emerging risk of infection will also be briefly discussed (e.g., avian influenza).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aksomaitiene J, Ramonaite S, Tamuleviciene E, Novoslavskij A, Alter T, Malakauskas M (2019) Overlap of antibiotic resistant Campylobacter jejuni MLST genotypes isolated from humans, broiler products, dairy cattle and wild birds in Lithuania. Front Microbiol 10:1377

    Article  Google Scholar 

  • Al Kaabi S, Al Kaabi A, Al NH (2021) What is beyond Salmonella gastroenteritis? A case of acute pancreatitis complicating Salmonella infection in a child: a case report and literature review. BMC Pediatr 21:353

    Article  Google Scholar 

  • Alerstam T, Bäckman J, Grönroos J, Olofsson P, Strandberg R (2019) Hypotheses and tracking results about the longest migration: the case of the arctic tern. Ecol Evol 9:9511–9531

    Article  Google Scholar 

  • Alley MR, Connolly JH, Fenwick SG, Mackereth GF, Leyland MJ, Rogers LE, Haycock M, Nicol C, Reed CE (2002) An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand. N Z Vet J 50:170–176

    Article  CAS  Google Scholar 

  • Allos BM (2001) Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206

    Article  CAS  Google Scholar 

  • Alonso CA, Mora A, Díaz D, Blanco M, González-Barrio D, Ruiz-Fons F, Simón C, Blanco J, Torres C (2017) Occurrence and characterization of stx and/or eae-positive Escherichia coli isolated from wildlife, including a typical EPEC strain from a wild boar. Vet Microbiol 207:69–73

    Article  Google Scholar 

  • Amery-Gale J, Legione AR, Marenda MS, Owens J, Eden PA, Konsak-Ilievski BM, Whiteley PL, Dobson EC, Browne EA, Slocombe RF, Devlin JM (2020) Surveilland for Chlamydia spp. with multilocus sequence typing analysis in wild and captive birds in Victoria, Australia. J Wildl Dis 56:16–26

    Article  CAS  Google Scholar 

  • Andersen AA, Vanrompay D (2000) Avian chlamydiosis. Rev Sci Tech 19:396–404

    Article  CAS  Google Scholar 

  • Andrés S, Vico JP, Garrido V, Grilló MJ, Samper S, Gavín P, Herrera-León S, Mainar-Jaime RC (2013) Epidemiology of subclinical salmonellosis in wild birds from an area of high prevalence of pig salmonellosis: phenotypic and genetic profiles of Salmonella isolates. Zoonoses Public Health 60:355–365

    Article  Google Scholar 

  • Bélanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM (2011) Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol 62:1–10

    Article  Google Scholar 

  • Bengis RG, Leighton FA, Fischer JR, Artois M, Mörner T, Tate CM (2004) The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech 23:497–511

    CAS  Google Scholar 

  • Benskin CM, Wilson K, Jones K, Hartley IR (2009) Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev Camb Philos Soc 84:349–373

    Article  Google Scholar 

  • Bloomfield SJ, Benschop J, Biggs PJ, Marshall JC, Hayman DTS, Carter PE, Midwinter AC, Mather AE, French NP (2017) Genomic analysis of Salmonella enterica serovar Typhimurium DT160 associated with a 14-year outbreak, New Zealand, 1998–2012. Emerg Infect Dis 23:906–913

    Article  CAS  Google Scholar 

  • Blyton MD, Pi H, Vangchhia B, Abraham S, Trott DJ, Johnson JR, Gordon DM (2015) Genetic structure and antimicrobial resistance of Escherichia coli and cryptic clades in birds with diverse human associations. Appl Environ Microbiol 81:5123–5133

    Article  CAS  Google Scholar 

  • Bolat A (2016) The Kazakh minority in Mongolia: falconry as a symbol of Kazakh identity. Senri Ethnological Studies 93:107–125

    Google Scholar 

  • Bolton DJ, O’Neill CJ, Fanning S (2012) A preliminary study of Salmonella, verocytotoxigenic Escherichia coli/Escherichia coli O157 and Campylobacter on four mixed farms. Zoonoses Public Health 59:217–228

    Article  CAS  Google Scholar 

  • Borges CA, Cardozo MV, Beraldo LG, Oliveira ES, Maluta RP, Barboza KB, Werther K, Ávila FA (2017) Wild birds and urban pigeons as reservoirs for diarrheagenic Escherichia coli with zoonotic potential. J Microbiol 55:344–348

    Article  CAS  Google Scholar 

  • Bracewell CD, Bevan BJ (1986) Chlamydiosis in birds in Great Britain. 1. Serological reactions to chlamydia in birds sampled between 1974 and 1983. J Hyg (Lond) 96:447–451

    Article  CAS  Google Scholar 

  • Branley JM, Roy B, Dwyer DE, Sorrell TC (2008) Real-time PCR detection and quantitation of Chlamydophila psittaci in human and avian specimens from a veterinary clinic cluster. Eur J Clin Microbiol Infect Dis 27:269–273

    Article  CAS  Google Scholar 

  • Broman T, Palmgren H, Bergström S, Sellin M, Waldenström J, Danielsson-Tham ML, Olsen B (2002) Campylobacter jejuni in black-headed gulls (Larus ridibundus): prevalence, genotypes, and influence on C. jejuni epidemiology. J Clin Microbiol 40:4594–4602

    Article  CAS  Google Scholar 

  • Cabe PR (2021) European starlings (Sturnus vulgaris) as vectors and reservoirs of pathogens affecting humans and domestic livestock. Animals (Basel) 11:466

    Article  Google Scholar 

  • Caspermeyer J (2016) Evolutionary study of birds’ sense of smell reveals important clues for behavior and adaptation. Mol Biol Evol 33:295–296

    Google Scholar 

  • Chaber AL, Jelocnik M, Woolford L (2021) Undiagnosed cases of human pneumonia following exposure to chlamydia psittaci from an infected rosella parrot. Pathogens 10:968

    Article  Google Scholar 

  • Chancey C, Grinev A, Volkova E, Rios M (2015) The global ecology and epidemiology of West Nile virus. Biomed Res Int 2015:376230

    Article  Google Scholar 

  • Chung O, Jin S, Cho YS, Lim J, Kim H, Jho S, Kim HM, Jun J, Lee H, Chon A, Ko J, Edwards J, Weber JA, Han K, O’Brien SJ, Manica A, Bhak J, Paek WK (2015) The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures. Genome Biol 16:215

    Article  Google Scholar 

  • Chung DM, Ferree E, Simon DM, Yeh PJ (2018) Patterns of bird-bacteria associations. Ecohealth 15:627–641

    Article  Google Scholar 

  • Clark L (2014) Disease risks posed by wild birds associated with agricultural landscapes. In: Matthews KR, Sapers GM, Gerba CP (eds) The produce contamination problem, Second edn. Academic Press, Elsevier Inc, Boston, pp 139–165

    Chapter  Google Scholar 

  • Cody AJ, McCarthy ND, Bray JE, Wimalarathna HM, Colles FM, Jansen van Rensburg MJ, Dingle KE, Waldenström J, Maiden MC (2015) Wild bird-associated Campylobacter jejuni isolates are a consistent source of human disease, in Oxfordshire, United Kingdom. Environ Microbiol Rep 7:782–788

    Article  Google Scholar 

  • Cody AJ, Maiden MC, Strachan NJ, McCarthy ND (2019) A systematic review of source attribution of human campylobacteriosis using multilocus sequence typing. Euro Surveill 24:1800696

    Article  Google Scholar 

  • Colbert-White EN, Covington MA, Fragaszy DM (2011) Social context influences the vocalizations of a home-raised African Grey parrot (Psittacus erithacus erithacus). J Comp Psychol 125:175–184

    Article  Google Scholar 

  • Collins J, Simpson KMJ, Bell G, Durrheim DN, Hill-Cawthorne GA, Hope K, Howard P, Kohlenberg T, Lawrence K, Lilly K, Porigneaux P, Sintchenko V, Wang Q, Ward MP, Wiethoelter A, Mor SM, Flint J (2019) A one health investigation of Salmonella enterica serovar Wangata in North-Eastern New South Wales, Australia, 2016-2017. Epidemiol Infect 147:e150

    Article  CAS  Google Scholar 

  • Costanzo GR (1990) Sarcocystis in American black ducks wintering in New Jersey. J Wildl Dis 26:387–389

    Article  CAS  Google Scholar 

  • Deepe GS Jr (2018) Outbreaks of histoplasmosis: the spores set sail. PLoS Pathog 14:e1007213

    Article  Google Scholar 

  • Díaz-Sánchez S, Sánchez S, Ewers C, Höfle U (2012) Occurrence of avian pathogenic Escherichia coli and antimicrobial-resistant E. coli in red-legged partridges (Alectoris rufa): sanitary concerns of farming. Avian Pathol 41:337–344

    Article  Google Scholar 

  • Dos Santos EJE, Azevedo RP, Lopes ATS, Rocha JM, Albuquerque GR, Wenceslau AA, Miranda FR, Rodrigues DDP, Maciel BM (2020) Salmonella spp. in wild free-living birds from atlantic forest fragments in southern Bahia, Brazil. Biomed Res Int 2020:7594136

    Article  Google Scholar 

  • Dovč A, Zorman-Rojs O, Vergles Rataj A, Bole-Hribovsek V, Krapez U, Dobeic M (2004) Health status of free-living pigeons (Columba livia domestica) in the city of Ljubljana. Acta Vet Hung 52:219–226

    Article  Google Scholar 

  • Elbediwi M, Pan H, Biswas S, Li Y, Yue M (2020) Emerging colistin resistance in Salmonella enterica serovar Newport isolates from human infections. Emerg Microbes Infect 9:535–538

    Article  CAS  Google Scholar 

  • Espín S, Sánchez-Virosta P (2021) A review of metal-induced effects on vitamins A, E and D3 in birds. Ecotoxicology 30:1–16

    Article  Google Scholar 

  • Espinosa L, Gray A, Duffy G, Fanning S, McMahon BJ (2018) A scoping review on the prevalence of Shiga-toxigenic Escherichia coli in wild animal species. Zoonoses Public Health 65:911–920

    Article  Google Scholar 

  • European Commission (2002) Avian chlamydiosis as a zoonotic disease and risk reduction strategies. Report of the European Commission’s Scientific Committee on Animal Health and Animal Welfare https://ec.europa.eu/food/system/files/2020-12/sci-com_scah_out73_en.pdf

  • Fahim KM, Ismael E, Khalefa HS, Farag HS, Hamza DA (2019) Isolation and characterization of E. coli strains causing intramammary infections from dairy animals and wild birds. Int J Vet Sci Med 7:61–70

    Article  Google Scholar 

  • Fatica MK, Schneider KR (2011) Salmonella and produce: survival in the plant environment and implications in food safety. Virulence 2:573–579

    Article  Google Scholar 

  • Feare CJ, Sanders MF, Blasco R, Bishop JD (1999) Canada goose (Branta canadensis) droppings as a potential source of pathogenic bacteria. J R Soc Promot Heal 119:146–155

    Article  CAS  Google Scholar 

  • Fonseca JM, Ravishankar S, Sanchez CA, Park E, Nolte KD (2020) Assessing the food safety risk posed by birds entering leafy greens fields in the US southwest. Int J Environ Res Public Health 17:8711

    Article  CAS  Google Scholar 

  • Ford L, Ingle D, Glass K, Veitch M, Williamson DA, Harlock M, Gregory J, Stafford R, French N, Bloomfield S, Grange Z, Conway ML, Kirk MD (2019) Whole-genome sequencing of Salmonella Mississippi and Typhimurium Definitive Type 160, Australia and New Zealand. Emerg Infect Dis 25:1690–1697

    Article  Google Scholar 

  • Franson JC, Pearson JE (1995) Probable epizootic chlamydiosis in wild California (Larus californicus) and ring-billed (Larus delawarensis) gulls in North Dakota. J Wildl Dis 31:424–427

    Article  CAS  Google Scholar 

  • Frątczak M, Indykiewicz P, Dulisz B, Nowakowski JJ, Janiszewski T, Szeptycki J, Wilczyński J, Tryjanowski P (2021) Lack of evidence that bird feeders are a source of salmonellosis during winter in Poland. Animals (Basel) 11:1831

    Article  Google Scholar 

  • French NP, Midwinter A, Holland B, Collins-Emerson J, Pattison R, Colles F, Carter P (2009) Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl Environ Microbiol 75:779–783

    Article  CAS  Google Scholar 

  • Fu Y, M’ikanatha NM, Lorch JM, Blehert DS, Berlowski-Zier B, Whitehouse CA, Li S, Deng X, Smith JC, Shariat NW, Nawrocki EM, Dudley EG (2022) Salmonella enterica serovar Typhimurium from wild birds in the United States represent distinct lineages defined by bird type. Appl Environ Microbiol:AEM0197921. Epub ahead of print

    Google Scholar 

  • Gardner TJ, Fitzgerald C, Xavier C, Klein R, Pruckler J, Stroika S, McLaughlin JB (2011) Outbreak of campylobacteriosis associated with consumption of raw peas. Clin Infect Dis 53:26–32. Erratum in: Clin Infect Dis. 2012;54:1040

    Article  Google Scholar 

  • Gaukler SM, Linz GM, Sherwood JS, Dyer NW, Bleier WJ, Wannemuehler YM, Nolan LK, Logue CM (2009) Escherichia coli, Salmonella, and Mycobacterium avium subsp. paratuberculosis in wild European starlings at a Kansas cattle feedlot. Avian Dis 53:544–551

    Article  Google Scholar 

  • George DR, Finn RD, Graham KM, Mul MF, Maurer V, Moro CV, Sparagano OA (2015) Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasit Vectors 8:178

    Article  Google Scholar 

  • Girdwood RW, Fricker CR, Munro D, Shedden CB, Monaghan P (1985) The incidence and significance of Salmonella carriage by gulls (Larus spp.) in Scotland. J Hyg (Lond) 95:229–241

    Article  CAS  Google Scholar 

  • Golden NH, Rattner BA (2003) Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants. Rev Environ Contam Toxicol 176:67–136

    Google Scholar 

  • Greig J, Rajić A, Young I, Mascarenhas M, Waddell L, LeJeune J (2015) A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain. Zoonoses Public Health 62:269–284

    Article  CAS  Google Scholar 

  • Griekspoor P, Hansbro PM, Waldenström J, Olsen B (2015) Campylobacter jejuni sequence types show remarkable spatial and temporal stability in Blackbirds. Infect Ecol Epidemiol 5:28383

    Google Scholar 

  • Grimes JE, Sullivan TD, Irons JV (1966) Recovery of ornithosis agent from naturally infected white-winged doves. J Wildlife Manag 30:594–598

    Article  Google Scholar 

  • Guzman-Pando A, Chacon-Murguia MI (2021) DeepFoveaNet: deep fovea eagle-eye bioinspired model to detect moving objects. IEEE Trans Image Process 30:7090–7100

    Article  Google Scholar 

  • Habarugira G, Suen WW, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H (2020) West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “One Health” implications. Pathogens 9:589

    Article  CAS  Google Scholar 

  • Hald B, Skov MN, Nielsen EM, Rahbek C, Madsen JJ, Wainø M, Chriél M, Nordentoft S, Baggesen DL, Madsen M (2016) Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms. Acta Vet Scand 58:11

    Article  Google Scholar 

  • Hall AJ, Saito EK (2008) Avian wildlife mortality events due to salmonellosis in the United States, 1985-2004. J Wildl Dis 44:585–593

    Article  Google Scholar 

  • Hamer SA, Lehrer E, Magle SB (2012) Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. Zoonoses Public Health 59:355–364

    Article  CAS  Google Scholar 

  • Handrova L, Kmet V (2019) Antibiotic resistance and virulence factors of Escherichia coli from eagles and goshawks. J Environ Sci Health B 54:605–614

    Article  CAS  Google Scholar 

  • Harkinezhad T, Verminnen K, De Buyzere M, Rietzschel E, Bekaert S, Vanrompay D (2009) Prevalence of Chlamydophila psittaci infections in a human population in contact with domestic and companion birds. J Med Microbiol 58:1207–1212

    Article  Google Scholar 

  • Hedenström A (2008) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond Ser B Biol Sci 363:287–299

    Article  Google Scholar 

  • Hepworth PJ, Ashelford KE, Hinds J, Gould KA, Witney AA, Williams NJ, Leatherbarrow H, French NP, Birtles RJ, Mendonca C, Dorrell N, Wren BW, Wigley P, Hall N, Winstanley C (2011) Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes. Environ Microbiol 13:1549–1560

    Article  Google Scholar 

  • Hernandez J, Bonnedahl J, Eliasson I, Wallensten A, Comstedt P, Johansson A, Granholm S, Melhus A, Olsen B, Drobni M (2010) Globally disseminated human pathogenic Escherichia coli of O25b-ST131 clone, harbouring blaCTX-M-15, found in Glaucous-winged gull at remote Commander Islands, Russia. Environ Microbiol Rep 2:329–332

    Article  CAS  Google Scholar 

  • Hinton DG, Shipley A, Galvin JW, Harkin JT, Brunton RA (1993) Chlamydiosis in workers at a duck farm and processing plant. Aust Vet J 70:174–176

    Article  CAS  Google Scholar 

  • Hogerwerf L, de Gier B, Baan B, van der Hoek W (2017) Chlamydia psittaci (psittacosis) as a cause of community-acquired pneumonia: a systematic review and meta-analysis. Epidemiol Infect 145:3096–3105

    Article  CAS  Google Scholar 

  • Hojgaard A, Eisen RJ, Piesman J (2008) Transmission dynamics of Borrelia burgdorferi s.s. during the key third day of feeding by nymphal Ixodes scapularis (Acari: Ixodidae). J Med Entomol 45:732–736

    Article  Google Scholar 

  • Horns JJ, Şekercioğlu ÇH (2018) Conservation of migratory species. Curr Biol 28:R980–R983

    Article  CAS  Google Scholar 

  • Igwaran A, Okoh AI (2019) Human campylobacteriosis: a public health concern of global importance. Heliyon 5:e02814

    Article  Google Scholar 

  • Irestedt M, Jønsson KA, Fjeldså J, Christidis L, Ericson PG (2009) An unexpectedly long history of sexual selection in birds-of-paradise. BMC Evol Biol 9:235

    Article  Google Scholar 

  • Ito K, Kubokura Y, Kaneko K, Totake Y, Ogawa M (1988) Occurrence of Campylobacter jejuni in free-living wild birds from Japan. J Wildl Dis 24:467–470

    Article  CAS  Google Scholar 

  • Johnson MC, Grimes JE (1983) Resistance of wild birds to infection by Chlamydia psittaci of mammalian origin. J Infect Dis 147:162

    Article  CAS  Google Scholar 

  • Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C, Johnson JR, Kim KS, Spanjaard L, Nolan LK (2008) Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 74:7043–7050

    Article  CAS  Google Scholar 

  • Jokinen CC, Koot JM, Carrillo CD, Gannon VP, Jardine CM, Mutschall SK, Topp E, Taboada EN (2012) An enhanced technique combining pre-enrichment and passive filtration increases the isolation efficiency of Campylobacter jejuni and Campylobacter coli from water and animal fecal samples. J Microbiol Methods 91:506–513

    Article  Google Scholar 

  • Jørgensen SL, Stegger M, Kudirkiene E, Lilje B, Poulsen LL, Ronco T, Pires Dos Santos T, Kiil K, Bisgaard M, Pedersen K, Nolan LK, Price LB, Olsen RH, Andersen PS, Christensen H (2019) Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. mSphere 4:e00333–e00318

    Article  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140

    Article  CAS  Google Scholar 

  • Kapperud G, Rosef O (1983) Avian wildlife reservoir of Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. in Norway. Appl Environ Microbiol 45:375–380

    Article  CAS  Google Scholar 

  • Kapperud G, Stenwig H, Lassen J (1998) Epidemiology of Salmonella Typhimurium O:4-12 infection in Norway–evidence of transmission from an avian wildlife reservoir. Am J Epidemiol 147:774–782

    Article  CAS  Google Scholar 

  • Kauffman MD, LeJeune J (2011) European starlings (Sturnus vulgaris) challenged with Escherichia coli O157 can carry and transmit the human pathogen to cattle. Lett Appl Microbiol 53:596–601

    Article  CAS  Google Scholar 

  • Khalefa HS, Ahmed ZS, Abdel-Kader F, Ismail EM, Elshafiee EA (2021) Sequencing and phylogenetic analysis of the stn gene of Salmonella species isolated from different environmental sources at Lake Qarun protectorate: the role of migratory birds and public health importance. Vet World 14:2764–2772

    Article  CAS  Google Scholar 

  • Kilpatrick AM, Wheeler SS (2019) Impact of West Nile Virus on bird populations: limited lasting effects, evidence for recovery, and gaps in our understanding of impacts on ecosystems. J Med Entomol 56:1491–1497

    Article  Google Scholar 

  • Kirk JH, Holmberg CA, Jeffrey JS (2002) Prevalence of Salmonella spp. in selected birds captured on California dairies. J Am Vet Med Assoc 220:359–362

    Article  Google Scholar 

  • Knöbl T, Saidenberg ABS, Moreno AM, Gomes TAT, Vieira MAM, Leite DS, Blanco JE, Ferreira JP (2011) Serogroups and virulence genes of Escherichia coli isolated from psittacine birds. Pesq Vet Bras 31:916–921

    Article  Google Scholar 

  • Kobayashi H, Kanazaki M, Hata E, Kubo M (2009) Prevalence and characteristics of eae- and stx-positive strains of Escherichia coli from wild birds in the immediate environment of Tokyo Bay. Appl Environ Microbiol 75:292–295

    Article  CAS  Google Scholar 

  • Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, Meijer A, van Steenbergen J, Fouchier R, Osterhaus A, Bosman A (2004) Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363:587–593

    Article  Google Scholar 

  • Kovanen S, Rossi M, Pohja-Mykrä M, Nieminen T, Raunio-Saarnisto M, Sauvala M, Fredriksson-Ahomaa M, Hänninen ML, Kivistö R (2019) Population genetics and characterization of Campylobacter jejuni isolates from western jackdaws and game birds in Finland. Appl Environ Microbiol 85:e02365–e02318

    Article  CAS  Google Scholar 

  • Kozdrun W, Czekaj, Stys N (2015) Avian zoonoses - a review. Bull Vet Inst Pulawy 59:171–178

    Article  Google Scholar 

  • Kuczkowski M, Krawiec M, Voslamber B, Książczyk M, Płoskońska-Bugla G, Wieliczko A (2016) Virulence genes and the antimicrobial susceptibility of Escherichia coli, isolated from wild waterbirds, in the Netherlands and Poland. Vector Borne Zoonotic Dis 16:528–536

    Article  Google Scholar 

  • Kuehne A, Bouwknegt M, Havelaar A, Gilsdorf A, Hoyer P, Stark K, Werber D (2016) HUS active surveillance network Germany. Estimating true incidence of O157 and non-O157 Shiga toxin-producing Escherichia coli illness in Germany based on notification data of haemolytic uraemic syndrome. Epidemiol Infect 144:3305–3315

    Article  CAS  Google Scholar 

  • Kürekci C, Sakin F, Epping L, Knüver MT, Semmler T, Stingl K (2021) Characterization of Campylobacter spp. strains isolated from wild birds in Turkey. Front Microbiol 12:712106

    Article  Google Scholar 

  • Kurihara T, Hirata A, Yamaguchi T, Okada H, Kameda M, Sakai H, Haridy M, Yanai T (2020) Avipoxvirus infection in two captive Japanese cormorants (Phalacrocorax capillatus). J Vet Med Sci 82:817–822

    Article  CAS  Google Scholar 

  • Kwan PS, Xavier C, Santovenia M, Pruckler J, Stroika S, Joyce K, Gardner T, Fields PI, McLaughlin J, Tauxe RV, Fitzgerald C (2014) Multilocus sequence typing confirms wild birds as the source of a Campylobacter outbreak associated with the consumption of raw peas. Appl Environ Microbiol 80:4540–4546

    Article  Google Scholar 

  • Laguë SL (2017) High-altitude champions: birds that live and migrate at altitude. J Appl Physiol (1985) 123:942–950

    Article  Google Scholar 

  • Lawson B, de Pinna E, Horton RA, Macgregor SK, John SK, Chantrey J, Duff JP, Kirkwood JK, Simpson VR, Robinson RA, Wain J, Cunningham AA (2014) Epidemiological evidence that garden birds are a source of human salmonellosis in England and Wales. PLoS One 9:e88968

    Article  Google Scholar 

  • Lévesque S, Fournier E, Carrier N, Frost E, Arbeit RD, Michaud S (2013) Campylobacteriosis in urban versus rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection. PLoS One 8:e83731

    Article  Google Scholar 

  • Li L, Jiang Z (2014) International trade of CITES listed bird species in China. PLoS One 9:e85012

    Article  Google Scholar 

  • Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS, Browning GF, Bushell RN, McKinnon J, Chowdhury PR, Hitchick N, Miller N, Donner E, Drigo B, Baker D, Charles IG, Kudinha T, Jarocki VM, Djordjevic SP (2021) Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 7:000721

    CAS  Google Scholar 

  • Lillehaug A, Monceyron Jonassen C, Bergsjø B, Hofshagen M, Tharaldsen J, Nesse LL, Handeland K (2005) Screening of feral pigeon (Colomba livia), mallard (Anas platyrhynchos) and graylag goose (Anser anser) populations for Campylobacter spp., Salmonella spp., avian influenza virus and avian paramyxovirus. Acta Vet Scand 46:193–202

    Article  CAS  Google Scholar 

  • Lima PC, Dutra IS, Araújo FAA, Lustosa R, Zeppelini CG, Franke CR (2020) First record of mass wild waterfowl mortality due to Clostridium botulinum in Brazilian semiarid. An Acad Bras Cienc 92:e20180370

    Article  CAS  Google Scholar 

  • Liu SY, Li KP, Hsieh MK, Chang PC, Shien JH, Ou SC (2019) Prevalence and genotyping of Chlamydia psittaci from domestic waterfowl, companion birds, and wild birds in Taiwan. Vector Borne Zoonotic Dis 19:666–673

    Article  Google Scholar 

  • Llarena AK, Taboada E, Rossi M (2017) Whole-genome sequencing in epidemiology of Campylobacter jejuni infections. J Clin Microbiol 55:1269–1275

    Article  Google Scholar 

  • Lu X, Ke D, Zeng X, Gong G, Ci R (2009) Status, ecology, and conservation of the Himalayan griffon Gyps himalayensis (Aves, Accipitridae) in the Tibetan plateau. Ambio 38:166–173

    Article  Google Scholar 

  • Luechtefeld NA, Blaser MJ, Reller LB, Wang WL (1980) Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl. J Clin Microbiol 12:406–408

    Article  CAS  Google Scholar 

  • Luján-Vega C, Hawkins MG, Johnson CK, Briggs C, Vennum C, Bloom PH, Hull JM, Cray C, Pesti D, Johnson L, Ciembor P, Ritchie BR (2018) Atypical Chlamydiaceae in wild populations of hawks (Buteo spp.) in California. J Zoo Wildl Med 49:108–115

    Article  Google Scholar 

  • Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    Article  CAS  Google Scholar 

  • MacDonald E, White R, Mexia R, Bruun T, Kapperud G, Brandal LT, Lange H, Nygård K, Vold L (2018) The role of domestic reservoirs in domestically acquired Salmonella infections in Norway: epidemiology of salmonellosis, 2000-2015, and results of a national prospective case-control study, 2010-2012. Epidemiol Infect 147:e43

    Article  CAS  Google Scholar 

  • Mäesaar M, Tedersoo T, Meremäe K, Roasto M (2020) The source attribution analysis revealed the prevalent role of poultry over cattle and wild birds in human campylobacteriosis cases in the Baltic States. PLoS One 15:e0235841

    Article  Google Scholar 

  • Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) International collaboration on enteric disease ‘burden of illness’ studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    Article  Google Scholar 

  • Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685

    Article  CAS  Google Scholar 

  • Marotta F, Janowicz A, Di Marcantonio L, Ercole C, Di Donato G, Garofolo G, Di Giannatale E (2020) Molecular characterization and antimicrobial susceptibility of C. jejuni isolates from Italian wild bird populations. Pathogens 9:304

    Article  CAS  Google Scholar 

  • Martín-Maldonado B, Montoro-Dasi L, Pérez-Gracia MT, Jordá J, Vega S, Marco-Jiménez F, Marin C (2019) Wild Bonelli’s eagles (Aquila fasciata) as carrier of antimicrobial resistant Salmonella and Campylobacter in Eastern Spain. Comp Immunol Microbiol Infect Dis 67:101372

    Article  Google Scholar 

  • Mather AE, Lawson B, de Pinna E, Wigley P, Parkhill J, Thomson NR, Page AJ, Holmes MA, Paterson GK (2016) Genomic analysis of Salmonella enterica serovar Typhimurium from wild passerines in England and Wales. Appl Environ Microbiol 82:6728–6735

    Article  CAS  Google Scholar 

  • Mattmann P, Marti H, Borel N, Jelocnik M, Albini S, Vogler BR (2019) Chlamydiaceae in wild, feral and domestic pigeons in Switzerland and insight into population dynamics by Chlamydia psittaci multilocus sequence typing. PLoS One 14:e0226088

    Article  CAS  Google Scholar 

  • McGee P, Bolton DJ, Sheridan JJ, Earley B, Kelly G, Leonard N (2002) Survival of Escherichia coli O157:H7 in farm water: its role as a vector in the transmission of the organism within herds. J Appl Microbiol 93:706–713

    Article  CAS  Google Scholar 

  • Minette HP (1986) Salmonellosis in the marine environment. A review and commentary. Int J Zoonoses 13:71–75

    CAS  Google Scholar 

  • Morabito S, Dell’Omo G, Agrimi U, Schmidt H, Karch H, Cheasty T, Caprioli A (2001) Detection and characterization of Shiga toxin-producing Escherichia coli in feral pigeons. Vet Microbiol 82:275–283

    Article  CAS  Google Scholar 

  • Moriarty EM, Weaver L, Sinton LW, Gilpin B (2012) Survival of Escherichia coli, enterococci and Campylobacter jejuni in Canada goose faeces on pasture. Zoonoses Public Health 59:490–497

    Article  CAS  Google Scholar 

  • Motarjemi Y, Adams M (2006) Emerging foodborne pathogens, 1st edn. Woodhead Publishing Ltd., Cambridge, England

    Book  Google Scholar 

  • Moulin-Schouleur M, Répérant M, Laurent S, Brée A, Mignon-Grasteau S, Germon P, Rasschaert D, Schouler C (2007) Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 45:3366–3376

    Article  CAS  Google Scholar 

  • Mughini-Gras L, Penny C, Ragimbeau C, Schets FM, Blaak H, Duim B, Wagenaar JA, de Boer A, Cauchie HM, Mossong J, van Pelt W (2016) Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res 101:36–45

    Article  CAS  Google Scholar 

  • Mughini-Gras L, Pijnacker R, Coipan C, Mulder AC, Fernandes Veludo A, de Rijk S, van Hoek AHAM, Buij R, Muskens G, Koene M, Veldman K, Duim B, van der Graaf-van BL, van der Weijden C, Kuiling S, Verbruggen A, van der Giessen J, Opsteegh M, van der Voort M, Castelijn GAA, Schets FM, Blaak H, Wagenaar JA, Zomer AL, Franz E (2021) Sources and transmission routes of campylobacteriosis: a combined analysis of genome and exposure data. J Infect 82:216–226

    Article  CAS  Google Scholar 

  • Mulder AC, Franz E, de Rijk S, Versluis MAJ, Coipan C, Buij R, Müskens G, Koene M, Pijnacker R, Duim B, Bloois LVG, Veldman K, Wagenaar JA, Zomer AL, Schets FM, Blaak H, Mughini-Gras L (2020) Tracing the animal sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res 187:116421

    Article  CAS  Google Scholar 

  • Navarro-Gonzalez N, Wright S, Aminabadi P, Gwinn A, Suslow TV, Jay-Russell MT (2020) Carriage and subtypes of foodborne pathogens identified in wild birds residing near agricultural lands in California: a repeated cross-sectional study. Appl Environ Microbiol 86:e01678–e01619

    Article  CAS  Google Scholar 

  • Nemeth NM, Beckett S, Edwards E, Klenk K, Komar N (2007) Avian mortality surveillance for West Nile virus in Colorado. Am J Trop Med Hyg 76:431–437

    Article  Google Scholar 

  • Nesse LL, Refsum T, Heir E, Nordby K, Vardund TV, Holstad G (2005) Molecular epidemiology of Salmonella spp. isolates from gulls, fishmeal factories, animals and humans in Norway based on pulsed-field gel electrophoresis. Epidemiol Infect 133:53–58

    Article  CAS  Google Scholar 

  • Newell DG, Mughini-Gras L, Kalupahana R, Wagenaar JA (2016) Campylobacter epidemiology–sources and routes of transmission for human infection. In: Klein G (ed) Campylobacter: features, detection, and prevention of foodborne disease. Academic Press, Long, UK; San Diego

    Google Scholar 

  • Newman EA, Eisen L, Eisen RJ, Fedorova N, Hasty JM, Vaughn C, Lane RS (2015) Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation. PLoS One 10:e0118146

    Article  Google Scholar 

  • Nielsen EM, Skov MN, Madsen JJ, Lodal J, Jespersen JB, Baggesen DL (2004) Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl Environ Microbiol 70:6944–6947

    Article  CAS  Google Scholar 

  • Oh JY, Kang MS, Hwang HT, An BK, Kwon JH, Kwon YK (2011) Epidemiological investigation of eaeA-positive Escherichia coli and Escherichia albertii strains isolated from healthy wild birds. J Microbiol 49:747–752

    Article  CAS  Google Scholar 

  • Olsen B, Persson K, Broholm KA (1998) PCR detection of Chlamydia psittaci in faecal samples from passerine birds in Sweden. Epidemiol Infect 121:481–484

    Article  CAS  Google Scholar 

  • Penfold JB, Amery HC, Peet PJ (1979) Gastroenteritis associated with wild birds in a hospital kitchen. Br Med J 2:802

    CAS  Google Scholar 

  • Pennycott TW, Cinderey RN, Park A, Mather HA, Foster G (2002) Salmonella enterica subspecies enterica serotype Typhimurium and Escherichia coli O86 in wild birds at two garden sites in south-west Scotland. Vet Rec 151:563–567

    Article  CAS  Google Scholar 

  • Pennycott TW, Park A, Mather HA (2006) Isolation of different serovars of Salmonella enterica from wild birds in Great Britain between 1995 and 2003. Vet Rec 158:817–820

    Article  CAS  Google Scholar 

  • Perez-Martinez JA, Storz J (1985) Antigenic diversity of Chlamydia psittaci of mammalian origin determined by microimmunofluorescence. Infect Immun 50:905–910

    Article  CAS  Google Scholar 

  • Ponitz B, Schmitz A, Fischer D, Bleckmann H, Brücker C (2014) Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus). PLoS One 9:e86506

    Article  Google Scholar 

  • Potier S, Mitkus M, Kelber A (2020) Visual adaptations of diurnal and nocturnal raptors. Semin Cell Dev Biol 106:116–126

    Article  Google Scholar 

  • Prukner-Radovcić E, Horvatek D, Gottstein Z, Grozdanić IC, Mazija H (2005) Epidemiological investigation of Chlamydophila psittaci in pigeons and free-living birds in Croatia. Vet Res Commun 29:17–21

    Article  Google Scholar 

  • Rapp D, Ross CM, Maclean P, Cave VM, Brightwell G (2021) Investigation of on-farm transmission routes for contamination of dairy cows with top 7 Escherichia coli O-Serogroups. Microb Ecol 81:67–77

    Article  CAS  Google Scholar 

  • Riordan T, Humphrey TJ, Fowles A (1993) A point source outbreak of Campylobacter infection related to bird-pecked milk. Epidemiol Infect 110:261–265

    Article  CAS  Google Scholar 

  • Rodrigues GCJ, Nair HP, O’Kane C, Walker CA (2021) Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environment. Ecol Evol 11:14303–14311

    Article  Google Scholar 

  • Rukambile E, Sintchenko V, Muscatello G, Kock R, Alders R (2019) Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: a review. Zoonoses Public Health 66:562–578

    Article  Google Scholar 

  • Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449–456

    Article  Google Scholar 

  • Russo TP, Pace A, Varriale L, Borrelli L, Gargiulo A, Pompameo M, Fioretti A, Dipineto L (2021) Prevalence and antimicrobial resistance of enteropathogenic bacteria in yellow-legged gulls (Larus michahellis) in southern Italy. Animals (Basel) 11:275

    Article  Google Scholar 

  • Rybak B, Krawczyk B, Furmanek-Blaszk B, Wysocka M, Fordon M, Ziolkowski P, Meissner W, Stepniewska K, Sikorska K (2022) Antibiotic resistance, virulence, and phylogenetic analysis of Escherichia coli strains isolated from free-living birds in human habitats. PLoS One 17:e0262236

    Article  CAS  Google Scholar 

  • Sachse K, Laroucau K, Vanrompay D (2015) Avian chlamydiosis. Curr Clin Microbiol R 2:10–21

    Article  Google Scholar 

  • Sanches LA, Gomes MDS, Teixeira RHF, Cunha MPV, Oliveira MGX, Vieira MAM, Gomes TAT, Knobl T (2017) Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC). Braz J Microbiol 48:760–763

    Article  CAS  Google Scholar 

  • Sauvala M, Woivalin E, Kivistö R, Laukkanen-Ninios R, Laaksonen S, Stephan R, Fredriksson-Ahomaa M (2021) Hunted game birds - carriers of foodborne pathogens. Food Microbiol 98:103768

    Article  CAS  Google Scholar 

  • Schaufler K, Semmler T, Wieler LH, Wöhrmann M, Baddam R, Ahmed N, Müller K, Kola A, Fruth A, Ewers C, Guenther S (2016) Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410--another successful pandemic clone? FEMS Microbiol Ecol 92:fiv155

    Article  Google Scholar 

  • Schmidt H, Scheef J, Morabito S, Caprioli A, Wieler LH, Karch H (2000) A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl Environ Microbiol 66:1205–1208

    Article  CAS  Google Scholar 

  • Seguino A, Chintoan-Uta C, Smith SH, Shaw DJ (2018) Public health significance of Campylobacter spp. colonisation of wild game pheasants (Phasianus colchicus) in Scotland. Food Microbiol 74:163–170

    Article  Google Scholar 

  • Senerwa D, Olsvik O, Mutanda LN, Lindqvist KJ, Gathuma JM, Fossum K, Wachsmuth K (1989) Enteropathogenic Escherichia coli serotype O111:HNT isolated from preterm neonates in Nairobi, Kenya. J Clin Microbiol 27:1307–1311

    Article  CAS  Google Scholar 

  • Sevilla E, Marín C, Delgado-Blas JF, González-Zorn B, Vega S, Kuijper E, Bolea R, Mainar-Jaime RC (2020) Wild griffon vultures (Gyps fulvus) fed at supplementary feeding stations: potential carriers of pig pathogens and pig-derived antimicrobial resistance? Transbound Emerg Dis 67:1295–1305

    Article  CAS  Google Scholar 

  • Shrestha RD, Midwinter AC, Marshall JC, Collins-Emerson JM, Pleydell EJ, French NP (2019) Campylobacter jejuni strains associated with wild birds and those causing human disease in six high-use recreational waterways in New Zealand. Appl Environ Microbiol 85:e01228–e01219

    Article  CAS  Google Scholar 

  • Simpson KMJ, Hill-Cawthorne GA, Ward MP, Mor SM (2018) Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect Dis 18:623

    Article  Google Scholar 

  • Smith OM, Snyder WE, Owen JP (2020) Are we overestimating risk of enteric pathogen spillover from wild birds to humans? Biol Rev Camb Philos Soc 95:652–679

    Article  Google Scholar 

  • Söderlund R, Jernberg C, Trönnberg L, Pääjärvi A, Ågren E, Lahti E (2019) Linked seasonal outbreaks of Salmonella Typhimurium among passerine birds, domestic cats and humans, Sweden, 2009 to 2016. Euro Surveill 24:1900074

    Article  Google Scholar 

  • Soon XQ, Gartrell B, Gedye K (2021) Presence and shedding of Chlamydia psittaci in waterfowl in a rehabilitation facility and in the wild in New Zealand. N Z Vet J 69:240–246

    Article  CAS  Google Scholar 

  • Spottiswoode CN, Begg KS, Begg CM (2016) Reciprocal signaling in honeyguide-human mutualism. Science 353:387–389

    Article  CAS  Google Scholar 

  • Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH, Laukamp S, Buscarino C, Krause DS (1998) Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 339:209–215

    Article  CAS  Google Scholar 

  • Stephenson I, Democratis J (2006) Influenza: current threat from avian influenza. Br Med Bull 75-76:63–80

    Article  Google Scholar 

  • Stokes HS, Martens JM, Walder K, Segal Y, Berg ML, Bennett ATD (2020) Species, sex and geographic variation in chlamydial prevalence in abundant wild Australian parrots. Sci Rep 10:20478

    Article  CAS  Google Scholar 

  • Stokes HS, Berg ML, Bennett ATD (2021) A review of chlamydial infections in wild birds. Pathogens 10:948

    Article  CAS  Google Scholar 

  • Sukon P, Nam NH, Kittipreeya P, Sara-In A, Wawilai P, Inchuai R, Weerakhun S (2021) Global prevalence of chlamydial infections in birds: a systematic review and meta-analysis. Prev Vet Med 192:105370

    Article  Google Scholar 

  • Taboada EN, Ross SL, Mutschall SK, Mackinnon JM, Roberts MJ, Buchanan CJ, Kruczkiewicz P, Jokinen CC, Thomas JE, Nash JH, Gannon VP, Marshall B, Pollari F, Clark CG (2012) Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of Campylobacter jejuni. J Clin Microbiol 50:788–797

    Article  CAS  Google Scholar 

  • Taff CC, Townsend AK (2017) Campylobacter jejuni infection associated with relatively poor body condition and low survival in a wild bird. J Avian Biol 48:1071–1076

    Article  Google Scholar 

  • Taff CC, Weis AM, Wheeler S, Hinton MG, Weimer BC, Barker CM, Jones M, Logsdon R, Smith WA, Boyce WM, Townsend AK (2016) Influence of host ecology and behavior on Campylobacter jejuni prevalence and environmental contamination risk in a synanthropic wild bird species. Appl Environ Microbiol 82:4811–4820

    Article  CAS  Google Scholar 

  • Thomas MK, Murray R, Flockhart L, Pintar K, Pollari F, Fazil A, Nesbitt A, Marshall B (2013) Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog Dis 10:639–648

    Article  Google Scholar 

  • Thornley CN, Simmons GC, Callaghan ML, Nicol CM, Baker MG, Gilmore KS, Garrett NK (2003) First incursion of Salmonella enterica serotype Typhimurium DT160 into New Zealand. Emerg Infect Dis 9:493–495

    Article  Google Scholar 

  • Thorns CJ (2000) Bacterial food-borne zoonoses. Rev Sci Tech 19:226–239

    Article  CAS  Google Scholar 

  • Tsiodras S, Kelesidis T, Kelesidis I, Bauchinger U, Falagas ME (2008) Human infections associated with wild birds. J Infect 56:83–98

    Article  Google Scholar 

  • Tucker VA (1998) Gliding flight: speed and acceleration of ideal falcons during diving and pull out. J Exp Biol 201:403–414

    Article  CAS  Google Scholar 

  • van Hoek AHAM, van Veldhuizen JNJ, Friesema I, Coipan C, Rossen JWA, Bergval IL, Franz E (2019) Comparative genomics reveals a lack of evidence for pigeons as a main source of stx2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics 20:271

    Article  Google Scholar 

  • Vande Weygaerde Y, Versteele C, Thijs E, De Spiegeleer A, Boelens J, Vanrompay D, Van Braeckel E, Vermaelen K (2018) An unusual presentation of a case of human psittacosis. Respir Med Case Rep 23:138–142

    Google Scholar 

  • Vaz CS, Voss-Rech D, Pozza JS, Coldebella A, Silva VS (2014) Isolation of Campylobacter from Brazilian broiler flocks using different culturing procedures. Poult Sci 93:2887–2892

    Article  CAS  Google Scholar 

  • Vogt NA, Pearl DL, Taboada EN, Reid-Smith RJ, Mulvey MR, Janecko N, Mutschall SK, Jardine CM (2019) A repeated cross-sectional study of the epidemiology of Campylobacter and antimicrobial resistant Enterobacteriaceae in free-living Canada geese in Guelph, Ontario, Canada. Zoonoses Public Health 66:60–72

    Article  CAS  Google Scholar 

  • Vogt NA, Stevens CPG, Pearl DL, Taboada EN, Jardine CM (2020) Generalizability and comparability of prevalence estimates in the wild bird literature: methodological and epidemiological considerations. Anim Health Res Rev 21:89–95

    Article  Google Scholar 

  • Waldenström J, Broman T, Carlsson I, Hasselquist D, Achterberg RP, Wagenaar JA, Olsen B (2002) Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol 68:5911–5917

    Article  Google Scholar 

  • Waldenström J, Axelsson-Olsson D, Olsen B, Hasselquist D, Griekspoor P, Jansson L, Teneberg S, Svensson L, Ellström P (2010) Campylobacter jejuni colonization in wild birds: results from an infection experiment. PLoS One 5:e9082

    Article  Google Scholar 

  • Weis AM, Storey DB, Taff CC, Townsend AK, Huang BC, Kong NT, Clothier KA, Spinner A, Byrne BA, Weimer BC (2016) Genomic comparison of Campylobacter spp. and their potential for zoonotic transmission between birds, primates, and livestock. Appl Environ Microbiol 82:7165–7175

    Article  CAS  Google Scholar 

  • Whelan CD, Monaghan P, Girdwood RW, Fricker CR (1988) The significance of wild birds (Larus sp.) in the epidemiology of Campylobacter infections in humans. Epidemiol Infect 101:259–267

    Article  CAS  Google Scholar 

  • Wiemeyer GM, Plaza PI, Bustos CP, Muñoz AJ, Lambertucci SA (2021) Exposure to anthropogenic areas may influence colonization by zoonotic microorganisms in scavenging birds. Int J Environ Res Public Health 18:5231

    Article  Google Scholar 

  • Williams J, Tallis G, Dalton C, Ng S, Beaton S, Catton M, Elliott J, Carnie J (1998) Community outbreak of psittacosis in a rural Australian town. Lancet 351:1697–1699

    Article  CAS  Google Scholar 

  • Wobeser GA (2007) Disease in wild animals: investigation and management, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Zepeda Mendoza ML, Roggenbuck M, Manzano Vargas K, Hansen LH, Brunak S, Gilbert MTP, Sicheritz-Pontén T (2018) Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet Scand 60:61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vogt, N.A. (2023). Wild Birds and Zoonotic Pathogens. In: Sing, A. (eds) Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. https://doi.org/10.1007/978-3-030-85877-3_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85877-3_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85877-3

  • Online ISBN: 978-3-030-85877-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics