Skip to main content

Zoonotic and Multidrug-Resistant Bacteria in Companion Animals Challenge Infection Medicine and Biosecurity

  • Living reference work entry
  • First Online:
Zoonoses: Infections Affecting Humans and Animals

Abstract

At present, various zoonotic and multidrug resistant (MDR) bacteria, including but not limited to Staphylococcus aureus and Escherichia coli, are well-equipped to survive and conquer new habitats, environments, and host species. These bacteria carry the ability to cross host species barriers through host-range broadening virulence factors and antimicrobial resistances, combined with mechanisms allowing them to spread and prosper, not only in clinical environments but also beyond their natural surroundings. This phenomenon can colloquially be summarized as an “enlarging the cake” strategy, meaning that from a long-term evolutionary perspective, generalist variants of bacterial species diverge into distinct habitats on their way to a specialized existence within a niche. While knowledge on the pathomechanisms behind bacterial diseases and infection sources are readily available, trans-sectoral research on the transmission of MDR bacteria across humans, animals, and the environment, although considered to be a prime example of the One Heath concept, lies still in its infancy, especially with respect to the role of companion animals. In addition, challenges such as the mobilization of novel antimicrobial resistance genes from the global resistome as well as incalculable external influences on this matter arising from both climate and landscape changes are predicted to arise in the near future. However, new opportunities to combat MDR bacteria in human and veterinary medicine lie within research conducted across the One Health framework: Novel technologies powered by bioinformatics that permit bacterial identification, typing, and source attribution on a nearly unlimited scale, allowing to unravel the natural forces driving bacterial evolution and enabling the development of suitable intervention strategies.

Enlarging the cake: zoonotic spread and continued adaptation of MDR bacteria across companion animal medicine and beyond

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen HK, Donato J et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259

    Article  CAS  PubMed  Google Scholar 

  • Azevedo M, Sousa A et al (2016) Trade-offs of Escherichia coli adaptation to an intracellular lifestyle in macrophages. PLoS One 11(1):e0146123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beceiro A, Tomas M et al (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26(2):185–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker K, Schaumburg F et al (2017) Staphylococcus aureus from the German general population is highly diverse. Int J Med Microbiol 307(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Bhat AH (2021) Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria. Microb Pathog 155:104891

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Ripple WJ et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17(9):569–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR) and the European Antimicrobial Resistance Surveillance Network (EARS-Net) (2021) Surveillance of antimicrobial resistance in Europe, 2020 data. WHO ECDC, Solna. ISBN 978-92-9498-556-9

    Google Scholar 

  • Cuny C, Friedrich A et al (2010) Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol 300(2–3):109–117

    Article  PubMed  Google Scholar 

  • D’Costa VM, King CE et al (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461

    Article  PubMed  Google Scholar 

  • Danko D, Bezdan D et al (2021) A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184(13):3376–3393.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf M, Beck R et al (2017) Sustained fecal-oral human-to-human transmission following a zoonotic event. Curr Opin Virol 22:1–6

    Article  PubMed  Google Scholar 

  • de Jong NWM, Vrieling M et al (2018) Identification of a staphylococcal complement inhibitor with broad host specificity in equid S. aureus strains. J Biol Chem 293:4468–4477

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong NWM, van Kessel KPM et al (2019) Immune evasion by Staphylococcus aureus. Microbiol Spectr 7(2):0061

    Google Scholar 

  • Diene SM, Corvaglia AR et al (2017) Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genomics 18(1):133

    Article  PubMed  PubMed Central  Google Scholar 

  • Epping L, Walther B et al (2021) Genome-wide insights into population structure and host specificity of Campylobacter jejuni. Sci Rep 11(1):10358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everitt RG, Didelot X et al (2014) Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nat Commun 5:3956

    Article  CAS  PubMed  Google Scholar 

  • Ewers C, Grobbel M et al (2011) Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Berl Munch Tierarztl Wochenschr 124(3–4):94–101

    PubMed  Google Scholar 

  • Ewers C, Bethe A et al (2012) Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18(7):646–655

    Article  CAS  PubMed  Google Scholar 

  • European Commission (2017) A European One Health Action Plan Against Antimicrobial Resistance [online]. https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf

  • Foster TJ (2002) Staphylococcus aureus. In: Sussmann M (ed) Molecular medical microbiology. Academic Press, Newcastle upon Tyne

    Google Scholar 

  • Geffers C, Gastmeier P (2011) Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the Hospital Infection Surveillance System). Dtsch Arztebl Int 108(6):87–93

    PubMed  PubMed Central  Google Scholar 

  • Gehlen H, Simon C et al (2020) Biosecurity measures for equine clinics and ambulatory practice (Basis-Hygienemaßnahmen für den Pferdetierarzt in Praxis und Klinik). Berl Münch Tierärztl Wochenschr 133. https://doi.org/10.2376/1439-0299-2020-3

  • Gekenidis MT, Rigotti S et al (2020) Long-term persistence of blaCTX-M-15 in soil and lettuce after introducing extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli via manure or water. Microorganisms 8:11

    Article  Google Scholar 

  • Gibb R, Redding DW et al (2020) Zoonotic host diversity increases in human-dominated ecosystems. Nature 584(7821):398–402

    Article  CAS  PubMed  Google Scholar 

  • Gibson JS, Morton JM et al (2011) Risk factors for multidrug-resistant Escherichia coli rectal colonization of dogs on admission to a veterinary hospital. Epidemiol Infect 139(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Guenther S (2015) In: Centre for Infection Medicine (ed) Multi-resistant Escherichia coli from wildlife 2015, Berlin (Germany). Habilitation thesis, REFUBIUM Freie Universität Berlin, Berlin

    Google Scholar 

  • Guenther S, Grobbel M et al (2010) Detection of pandemic B2-O25-ST131 Escherichia coli harbouring the CTX-M-9 extended-spectrum beta-lactamase type in a feral urban brown rat (Rattus norvegicus). J Antimicrob Chemother 65(3):582–584

    Article  CAS  PubMed  Google Scholar 

  • Guenther S, Ewers C et al (2011) Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:1–13

    Article  Google Scholar 

  • Guenther S, Semmler T et al (2017) Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J Antimicrob Chemother 72(5):1310–1313

    Article  CAS  PubMed  Google Scholar 

  • Haenni M, Chatre P et al (2017) Molecular epidemiology of methicillin-resistant Staphylococcus aureus in horses, cats, and dogs over a 5-year period in France. Front Microbiol 8:2493

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque M, Sartelli M et al (2018) Health care-associated infections – an overview. Infect Drug Resist 11:2321–2333

    Article  PubMed  PubMed Central  Google Scholar 

  • Homeier-Bachmann T, Heiden SE et al (2021) Antibiotic-resistant Enterobacteriaceae in wastewater of abattoirs. Antibiotics 10:5

    Article  Google Scholar 

  • Homeier-Bachmann T, Schütz AK et al (2022) Genomic analysis of ESBL-producing E. coli in wildlife from north-eastern Germany. Antibiotics 11(2):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Yang X et al (2016) The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol 82(22):6672–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber C, Stamm I et al (2020) Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci Rep 10(1):14787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongerius I, Kohl J et al (2007) Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 204(10):2461–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathayat D, Lokesh D et al (2021) Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens 10:4

    Article  Google Scholar 

  • Kauter A, Epping L et al (2021) Frequency, local dynamics, and genomic characteristics of ESBL-producing Escherichia coli isolated from specimens of hospitalized horses. Front Microbiol 12:671676

    Article  PubMed  PubMed Central  Google Scholar 

  • Keesing F, Ostfeld RS (2021) Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc Natl Acad Sci U S A 118:17

    Article  Google Scholar 

  • Koeck R, Herr C et al (2021) Multiresistant Gram-negative pathogens – a zoonotic problem. Dtsch Arztebl Int 118(35–36):579–589

    Google Scholar 

  • Lagerstrom KM, Hadly EA (2021) The under-investigated wild side of Escherichia coli: genetic diversity, pathogenicity and antimicrobial resistance in wild animals. Proc Biol Sci 288(1948):20210399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen J, Raisen CL et al (2022) Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 602:135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS, de Lencastre H et al (2018) Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4:18033

    Google Scholar 

  • Lopes R, Fuentes-Castillo D et al (2021) Endophytic lifestyle of global clones of extended-spectrum beta-lactamase-producing priority pathogens in fresh vegetables: a Trojan horse strategy favoring human colonization? mSystems 6(1):e01125-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv J, Deng S et al (2021) A review of artificial intelligence applications for antimicrobial resistance. Biosaf Health 3(1):22–31

    Article  Google Scholar 

  • MacFadden DR, McGough SF et al (2018) Antibiotic resistance increases with local temperature. Nat Clim Chang 8(6):510–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney AR, Safaee MM et al (2021) The silent pandemic: emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 24(4):102304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maljkovic Berry I, Melendrez MC et al (2020) Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: approaches, applications, and considerations for development of laboratory capacity. J Infect Dis 221(Suppl 3):S292–S307

    PubMed  Google Scholar 

  • Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276(1667):2521–2530

    PubMed  PubMed Central  Google Scholar 

  • Mathers AJ, Peirano G et al (2015) Escherichia coli ST131: the quintessential example of an international multiresistant high-risk clone. Adv Appl Microbiol 90:109–154

    Article  CAS  PubMed  Google Scholar 

  • McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinformatics study. Infect Genet Evol 19:7–14

    Article  CAS  PubMed  Google Scholar 

  • McEwen SA, Collignon PJ (2018) Antimicrobial resistance: a One Health perspective. Microbiol Spectr 6(2):9

    Article  Google Scholar 

  • Murray CJL, Ikuta KS et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655

    Article  CAS  Google Scholar 

  • Nuesch-Inderbinen M, Treier A et al (2019) Raw meat-based diets for companion animals: a potential source of transmission of pathogenic and antimicrobial-resistant Enterobacteriaceae. R Soc Open Sci 6(10):191170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogeer-Gyles JS, Mathews KA et al (2006) Nosocomial infections and antimicrobial resistance in critical care medicine. J Vet Emerg Crit Care 16(1):1–18

    Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38(5):817–827

    Article  Google Scholar 

  • Pickering AC, Yebra G et al (2021) Evolutionary and functional analysis of coagulase positivity among the Staphylococci. mSphere 6(4):e0038121

    Article  PubMed  Google Scholar 

  • Pitout JDD (2012) Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Plowright RK, Parrish CR et al (2017) Pathways to zoonotic spillover. Nat Rev Microbiol 15(8):502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queenan K, Hasler B et al (2016) A One Health approach to antimicrobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents 48(4):422–427

    Article  CAS  PubMed  Google Scholar 

  • Rhouma M, Fairbrother JM et al (2017) Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 59(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Tzekou A et al (2009) A molecular insight into complement evasion by the staphylococcal complement inhibitor protein family. J Immunol 183(4):2565–2574

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Verdugo A, Lozano-Huntelman N et al (2020) Compounding effects of climate warming and antibiotic resistance. iScience 23(4):101024

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozman V, Bogovič Matijašić B et al (2019) Antimicrobial resistance of common zoonotic bacteria in the food chain: an emerging threat. IntechOpen, London

    Google Scholar 

  • Ruiz-Ripa L, Simon C et al (2021) S. pseudintermedius and S. aureus lineages with transmission ability circulate as causative agents of infections in pets for years. BMC Vet Res 17(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumball NA, Mayer HC et al (2020) Selective survival of Escherichia coli phylotypes in freshwater beach sand. Appl Environ Microbiol 87(4):e02473-20

    Article  PubMed  Google Scholar 

  • Schaufler K, Bethe A et al (2015) Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect Ecol Epidemiol 5:25334

    PubMed  Google Scholar 

  • Schaufler K, Semmler T et al (2016a) Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages. Front Microbiol 7:336

    Google Scholar 

  • Schaufler K, Semmler T et al (2016b) Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410 – another successful pandemic clone? FEMS Microbiol Ecol 92(1):fiv155

    Google Scholar 

  • Schaufler K, Nowak K et al (2018) Clinically relevant ESBL-producing K. pneumoniae ST307 and E. coli ST38 in an urban West African rat population. Front Microbiol 9:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaufler K, Semmler T et al (2019) Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob Agents Chemother 63(6):e00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Loeffler A et al (2017) Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet Dermatol 28(1):82.e19

    Article  PubMed  Google Scholar 

  • Sheppard SK, Guttman DS et al (2018) Population genomics of bacterial host adaptation. Nat Rev Genet 19(9):549–565

    Article  CAS  PubMed  Google Scholar 

  • Singleton DA, Pongchaikul P et al (2021) Temporal, spatial, and genomic analyses of Enterobacteriaceae clinical antimicrobial resistance in companion animals reveals phenotypes and genotypes of One Health concern. Front Microbiol 12:700698

    Article  PubMed  PubMed Central  Google Scholar 

  • Song SJ, Lauber C et al (2013) Cohabiting family members share microbiota with one another and with their dogs. elife 2:e00458

    Article  PubMed  PubMed Central  Google Scholar 

  • Sriswasdi S, Yang CC et al (2017) Generalist species drive microbial dispersion and evolution. Nat Commun 8(1):1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Stull JW, Weese JS (2015) Hospital-associated infections in small animal practice. Vet Clin North Am Small Anim Pract 45(2):217–233, v

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan I, Rahman S et al (2018) Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol 9:2066

    Article  PubMed  PubMed Central  Google Scholar 

  • van Alen S, Ballhausen B et al (2017) In the centre of an epidemic: fifteen years of LA-MRSA CC398 at the University Hospital Munster. Vet Microbiol 200:19–24

    Article  PubMed  Google Scholar 

  • van Hal SJ, Jensen SO et al (2012) Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev 25(2):362–386

    Article  PubMed  PubMed Central  Google Scholar 

  • van Wamel WJ, Rooijakkers SH et al (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188(4):1310–1315

    Article  PubMed  PubMed Central  Google Scholar 

  • Viana D, Blanco J, T et al (2010) Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol 77(6):1583–1594

    Google Scholar 

  • Vila J, Saez-Lopez E et al (2016) Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 40(4):437–463

    Google Scholar 

  • Vincze S, Stamm I et al (2014) Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS One 9(1):e85656

    Article  PubMed  PubMed Central  Google Scholar 

  • von Wintersdorff CJH, Penders J et al (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173

    Google Scholar 

  • Walther B (2021) Emergence of antimicrobial resistant bacteria in and beyond companion animal medicine. Habiltation theisis, Freie Universität Berlin [online]. https://refubium.fu-berlin.de/bitstream/handle/fub188/34231/Walther_kumulative_Habilitation.pdf?sequence=4&isAllowed=y

  • Walther B, Monecke S et al (2009) Comparative molecular analysis substantiates a zoonotic potential of equine methicillin- resistant Staphylococcus aureus (MRSA). J Clin Microbiol 47:704–710

    Article  PubMed  Google Scholar 

  • Walther B, Hermes J et al (2012) Sharing more than friendship – nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS One 7(4):e35197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther B, Lübke-Becker A et al (2014) Suspected nosocomial infections with multi-drug resistant E. coli, including extended-spectrum beta-lactamase (ESBL)-producing strains, in an equine clinic. Berl Munch Tierarztl Wochenschr 127(11–12):421–427

    Google Scholar 

  • Walther B, Tedin K et al (2017) Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol 200:71–78

    Article  PubMed  Google Scholar 

  • Walther B, Klein KS et al (2018) Equine methicillin-resistant sequence type 398 Staphylococcus aureus (MRSA) harbor mobile genetic elements promoting host adaptation. Front Microbiol 9:2516

    Article  PubMed  PubMed Central  Google Scholar 

  • Weese JS (2004) Barrier precautions, isolation protocols, and personal hygiene in veterinary hospitals. Vet Clin North Am Equine Pract 20(3):543–559

    Article  PubMed  Google Scholar 

  • Weese SJ (2008) Antimicrobial resistance in companion animals. Anim Health Res Rev 9(2):169–176

    Article  Google Scholar 

  • Wieler LH, Ewers C et al (2011) Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 301(8):635–641

    Article  PubMed  Google Scholar 

  • Wieler LH, Walther B et al (2015) Infections with multidrug-resistant bacteria: has the post-antibiotic era arrived in companion animals? In: Sing A (ed) Zoonoses – infections affecting humans and animals: focus on public health aspects. Springer, Oberschleißheim. ISBN 978-9401794565

    Google Scholar 

  • Woodford N, Turton JF et al (2011) Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):736–755

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2017a) In: WHO (ed) Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016–2017. WHO, Geneva. ISBN: 978-92-4-151344-9

    Google Scholar 

  • World Health Organization (WHO) (2017b) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO, Geneva. ISBN: 978-92-4-151344-9

    Google Scholar 

  • Wozniak TM, Barnsbee L et al (2019) Using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrob Resist Infect Control 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–186

    Article  CAS  PubMed  Google Scholar 

  • Zarfel G, Galler H et al (2013) Comparison of extended-spectrum-beta-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection. Environ Pollut 173:192–199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar H. Wieler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Walther, B., Schaufler, K., Wieler, L.H., Lübke-Becker, A. (2022). Zoonotic and Multidrug-Resistant Bacteria in Companion Animals Challenge Infection Medicine and Biosecurity. In: Sing, A. (eds) Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. https://doi.org/10.1007/978-3-030-85877-3_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85877-3_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85877-3

  • Online ISBN: 978-3-030-85877-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics