Skip to main content

Potential Role of Vitrification and Waste Vitrification in the Circular Economy

  • Chapter
  • First Online:
Ceramics, Glass and Glass-Ceramics

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

Following the general increase of population and industrial development, the management of resources through use of secondary source of raw materials, recycling and energy recovery from waste products are growing in importance. There are many challenges associated with each approach in which waste treatment and handling its by-products are among the most environmentally concerned matters. This chapter is divided into two main parts for two types of waste management: municipal solid waste management, and wastewater management. In the first part, management of municipal solid waste, incineration as a tool for energy recovery and its hazardous by-products fly ash and bottom ash are introduced. It has shown that vitrification of these ashes could open lots of potential for their utilization in various products such as cement and clinker substitution, or preparation of foam glass–ceramics as construction materials. In this chapter, a guide to successfully vitrify fly ash is also introduced and discussed. The second part of this chapter is dedicated to wastewater management, focusing on the potential use of rice-husk, an agricultural by-product to be utilized as an adsorbent for removal of heavy metals from wastewater. The final heavy-metal containing rice husk introduces new environmental concerns prior to landfill, and we have shown that vitrification has the potential to safely encapsulate this material and even give the opportunity to prepare foam glass–ceramics after its vitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prieto-Sandoval, V., Jaca, C., Ormazabal, M.: Towards a consensus on the circular economy. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2017.12.224

    Article  Google Scholar 

  2. Kawai, K., Tasaki, T.: Revisiting estimates of municipal solid waste generation per capita and their reliability. J. Mater. Cycles Waste Manag. (2016). https://doi.org/10.1007/s10163-015-0355-1

    Article  Google Scholar 

  3. Joseph, A.M., Snellings, R., Van den Heede, P., Matthys, S., De Belie, N.: The use of municipal solidwaste incineration ash in various building materials: a Belgian point of view. Materials (Basel) 11 (2018). https://doi.org/10.3390/ma11010141

  4. Moya, D., Aldás, C., López, G., Kaparaju, P.: Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies. Energy Procedia 134, 286–295 (2017). https://doi.org/10.1016/j.egypro.2017.09.618

    Article  Google Scholar 

  5. Ji, L., Lu, S., Yang, J., Du, C., Chen, Z., Buekens, A., et al.: Municipal solid waste incineration in China and the issue of acidification: a review. Waste Manag. Res. (2016). https://doi.org/10.1177/0734242X16633776

    Article  Google Scholar 

  6. Perrot, J.F., Subiantoro, A.: Municipal waste management strategy review and waste-to-energy potentials in New Zealand. Sustain (2018). https://doi.org/10.3390/su10093114

    Article  Google Scholar 

  7. Kilkovsky, B., Stehlik, P., Jegla, Z., Tovazhnyansky, L.L., Arsenyeva, O., Kapustenko, P.O.: Heat exchangers for energy recovery in waste and biomass to energy technologies—I. Energy recovery from flue gas. Appl. Therm. Eng. 64, 213–223 (2014). https://doi.org/10.1016/j.applthermaleng.2013.11.041

  8. Boesch, M.E., Vadenbo, C., Saner, D., Huter, C., Hellweg, S.: An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag. 34, 378–389 (2014). https://doi.org/10.1016/j.wasman.2013.10.019

    Article  CAS  Google Scholar 

  9. Loginova, E., Volkov, D.S., van de Wouw, P.M.F., Florea, M.V.A., Brouwers, H.J.H.: Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. J. Clean. Prod. 207, 866–874 (2019). https://doi.org/10.1016/j.jclepro.2018.10.022

    Article  Google Scholar 

  10. Xuan, D., Tang, P., Poon, C.S.: Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications—a review. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.174

    Article  Google Scholar 

  11. Dabo, D., Raimbault, L., Badreddine, R., Chaurand, P., Rose, J., De Windt, L.: Characterisation of glassy and heterogeneous cementing phases of municipal solid waste of incineration (MSWI) bottom ash. Austr. Inst. Min. Metall. Publ. Ser. (2008)

    Google Scholar 

  12. Saffarzadeh, A., Shimaoka, T., Wei, Y., Gardner, K.H., Musselman, C.N.: Impacts of natural weathering on the transformation/neoformation processes in landfilled MSWI bottom ash: a geoenvironmental perspective. Waste Manag. (2011). https://doi.org/10.1016/j.wasman.2011.07.017

    Article  Google Scholar 

  13. Čarnogurská, M., Lázár, M., Puškár, M., Lengyelová, M., Václav, J., Širillová, U.: Measurement and evaluation of properties of MSW fly ash treated by plasma. Meas. J. Int. Meas. Confed. 62, 155–161 (2015). https://doi.org/10.1016/j.measurement.2014.11.014

  14. Luo, H., Cheng, Y., He, D., Yang, E.H.: Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2019.03.004

    Article  Google Scholar 

  15. Weibel, G.: Optimized Metal Recovery from Fly Ash from Municipal Solid Waste Incineration. Bern University (2017)

    Google Scholar 

  16. Weibel, G., Eggenberger, U., Kulik, D.A., Hummel, W., Schlumberger, S., Klink, W., et al.: Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Manag. 76, 457–471 (2018). https://doi.org/10.1016/j.wasman.2018.03.022

    Article  CAS  Google Scholar 

  17. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., et al.: A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. (2015). https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  18. Gartner, E.: Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. (2004). https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  19. Maddalena, R., Roberts, J.J., Hamilton, A.: Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.02.138

    Article  Google Scholar 

  20. Kikuchi, R.: Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resour. Conserv. Recycl. (2001). https://doi.org/10.1016/S0921-3449(00)00077-X

    Article  Google Scholar 

  21. Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., Palomo, A.: Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr. Build. Mater. 105, 218–226 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.079

    Article  CAS  Google Scholar 

  22. Sharifikolouei, E., Canonico, F., Salvo, M., Baino, F., Ferraris, M.: Vitrified and nonvitrified municipal solid wastes as ordinary Portland cement (OPC) and sand substitution in mortars. Int. J. Appl. Ceram. Technol. (2020). https://doi.org/10.1111/ijac.13447

    Article  Google Scholar 

  23. Ferraris, M., Salvo, M., Ventrella, A., Buzzi, L., Veglia, M.: Use of vitrified MSWI bottom ashes for concrete production. Waste Manag. 29, 1041–1047 (2009). https://doi.org/10.1016/j.wasman.2008.07.014

    Article  CAS  Google Scholar 

  24. Xu, G., Shi, X.: Characteristics and applications of fly ash as a sustainable construction material: a state-of-the-art review. Resour. Conserv. Recycl. 136, 95–109 (2018). https://doi.org/10.1016/j.resconrec.2018.04.010

    Article  Google Scholar 

  25. Tang, P., Xuan, D., Poon, C.S., Tsang, D.C.W.: Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): feasibility and influence of binder types. J. Hazard Mater. (2019). https://doi.org/10.1016/j.jhazmat.2019.01.112

    Article  Google Scholar 

  26. Lynn, C.J., Ghataora, G.S., Dhir, O.B.E.R.K.: Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. Int. J. Pavem. Res. Technol. (2017). https://doi.org/10.1016/j.ijprt.2016.12.003

    Article  Google Scholar 

  27. Ponsot, I., Bernardo, E., Bontempi, E., Depero, L., Detsch, R., Chinnam, R.K., et al.: Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. J. Clean. Prod. 89, 224–230 (2015). https://doi.org/10.1016/j.jclepro.2014.10.091

    Article  CAS  Google Scholar 

  28. Xiao, Y., Oorsprong, M., Yang, Y., Voncken, J.H.L.: Vitrification of bottom ash from a municipal solid waste incinerator. Waste Manag. 28, 1020–1026 (2008). https://doi.org/10.1016/j.wasman.2007.02.034

    Article  CAS  Google Scholar 

  29. Waste Gasification Technology (Direct Melting System): Waste gasification with Direct Melting System We Make The World A Cleaner Place (n.d.)

    Google Scholar 

  30. Shibaike, H., Hoshizawa, Y., Tanaka, H., Nishi, T., Takamiya, K., Kato, Y., et al.: Development of high-performance direct melting process for municipal solid waste. Nippon Steel Tech. Rep. 22–29 (2005)

    Google Scholar 

  31. Huang, Q., Cai, X., Alhadj-Mallah, M.M., Du, C., Chi, Y., Yan, J.: Thermal plasma vitrification of MSWI fly ash mixed with different biomass ashes. IEEE Trans. Plasma Sci. 42, 3549–3554 (2014). https://doi.org/10.1109/TPS.2014.2358626

    Article  CAS  Google Scholar 

  32. Faik, A., Guillot, S., Lambert, J., Véron, E., Ory, S., Bessada, C., et al.: Thermal storage material from inertized wastes: evolution of structural and radiative properties with temperature. Sol. Energy 86, 139–146 (2012). https://doi.org/10.1016/J.SOLENER.2011.09.014

    Article  CAS  Google Scholar 

  33. Sharifikolouei, E., Baino, F., Salvo, M., Tommasi, T., Pirone, R., Fino, D., et al.: Vitrification of municipal solid waste incineration fly ash: an approach to find the successful batch compositions. Ceram Int. (2020). https://doi.org/10.1016/j.ceramint.2020.11.118

    Article  Google Scholar 

  34. Baino, F., Ferraris, M.: Production and characterization of ceramic foams derived from vitrified bottom ashes. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2018.10.122

    Article  Google Scholar 

  35. Rincon Romero, A., Salvo, M., Bernardo, E.: Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of ‘inorganic gel casting’ and sinter-crystallization. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.135

    Article  Google Scholar 

  36. Bernardo, E., Albertini, F.: Glass foams from dismantled cathode ray tubes. Ceram. Int. (2006). https://doi.org/10.1016/j.ceramint.2005.04.019

    Article  Google Scholar 

  37. Tulyaganov, D.U., Fernandes, H.R., Agathopoulos, S., Ferreira, J.M.F.: Preparation and characterization of high compressive strength foams from sheet glass. J. Porous Mater. (2006). https://doi.org/10.1007/s10934-006-7014-9

    Article  Google Scholar 

  38. Salgot, M., Folch, M.: Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Heal. (2018). https://doi.org/10.1016/j.coesh.2018.03.005

    Article  Google Scholar 

  39. Levine, A.D., Asano, T.: Recovering sustainable water from wastewater. Environ. Sci. Technol. (2004). https://doi.org/10.1021/es040504n

    Article  Google Scholar 

  40. Guerra-Rodríguez, S., Oulego, P., Rodríguez, E., Singh, D.N., Rodríguez-Chueca, J.: Towards the implementation of circular economy in the wastewater sector: challenges and opportunities. Water (Switzerland) (2020). https://doi.org/10.3390/w12051431

    Article  Google Scholar 

  41. Rashidi, H., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Nik Sulaiman, N.M., Tookey, J., Hashim, N.A.: Application of wastewater treatment in sustainable design of green built environments: a review. Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2015.04.104

    Article  Google Scholar 

  42. Mo, W., Zhang, Q.: Energy-nutrients-water nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manage. (2013). https://doi.org/10.1016/j.jenvman.2013.05.007

    Article  Google Scholar 

  43. Theregowda, R.B., González-Mejía, A.M., Ma, X., Garland, J.: Nutrient recovery from municipal wastewater for sustainable food production systems: an alternative to traditional fertilizers. Environ. Eng. Sci. (2019). https://doi.org/10.1089/ees.2019.0053

    Article  Google Scholar 

  44. Neczaj, E., Grosser, A.: Circular economy in wastewater treatment plant–challenges and barriers. In: Proceedings (2018). https://doi.org/10.3390/proceedings2110614

  45. Zhang, Q., Hu, J., Lee, D.J., Chang, Y., Lee, Y.J.: Sludge treatment: current research trends. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.07.070

    Article  Google Scholar 

  46. Marks, J.S., Zadoroznyj, M.: Managing sustainable urban water reuse: structural context and cultures of trust. Soc. Nat. Resour. (2005). https://doi.org/10.1080/08941920590947995

    Article  Google Scholar 

  47. Sobhanardakani, S., Tayebi, L., Farmany, A.: Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Appl. Sci. J. (2011)

    Google Scholar 

  48. Wuana, R.A., Okieimen, F.E.: Heavy metals in contaminated soils: a review of sources, chemistry, risks, and best available strategies for remediation. Heavy Met. Contam. Water Soil Anal. Assess., Remediat. Strateg. (2014). https://doi.org/10.1201/b16566

  49. Bjuhr, J.: Trace Metals in Soils Irrigated with Waste Water in a Periurban Area Downstream Hanoi City, Vietnam. Semin Pap (2007)

    Google Scholar 

  50. Kobya, M., Gebologlu, U., Ulu, F., Oncel, S., Demirbas, E.: Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochim. Acta (2011). https://doi.org/10.1016/j.electacta.2011.03.086

    Article  Google Scholar 

  51. Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A.F.: Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. (2019). https://doi.org/10.1016/j.jiec.2019.03.029

    Article  Google Scholar 

  52. Mafu, L.D., Msagati, T.A.M., Mamba, B.B.: The enrichment and removal of arsenic (III) from water samples using HFSLM. Phys. Chem. Earth (2012). https://doi.org/10.1016/j.pce.2012.08.018

    Article  Google Scholar 

  53. Smedley, P.L., Kinniburgh, D.G.: A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. (2002). https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  54. Raouf, M.S.A., Raheim, A.R.M.A.: Removal of heavy metals from industrial waste water by biomass-based materials: a review. J. Pollut. Effect Control (2016). https://doi.org/10.4172/2375-4397.1000180

    Article  Google Scholar 

  55. Obaid, S.S., Gaikwad, D.K., Sayyed, M.I., Al-Rashdi, K., Pawar, P.P.: Heavy metal ions removal from waste water bythe natural zeolites. Mater. Today Proc. (2018). https://doi.org/10.1016/j.matpr.2018.06.122

  56. Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C.L., Franscescon, F., Freitas, L., et al.: Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2016.11.008

    Article  Google Scholar 

  57. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., et al.: Heavy metal adsorption with zeolites: the role of hierarchical pore architecture. Chem. Eng. J. 359, 363–372 (2019). https://doi.org/10.1016/J.CEJ.2018.11.087

    Article  CAS  Google Scholar 

  58. Cao, F., Lian, C., Yu, J., Yang, H., Lin, S.: Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresour. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.01.007

    Article  Google Scholar 

  59. Wahby, A., Abdelouahab-Reddam, Z., El Mail, R., Stitou, M., Silvestre-Albero, J., Sepúlveda-Escribano, A., et al.: Mercury removal from aqueous solution by adsorption on activated carbons prepared from olive stones. Adsorption (2011). https://doi.org/10.1007/s10450-011-9334-6

    Article  Google Scholar 

  60. Karnib, M., Kabbani, A., Holail, H., Olama, Z.: Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia (2014). https://doi.org/10.1016/j.egypro.2014.06.014

    Article  Google Scholar 

  61. Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M.G., Taheri, H.: Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. J. Hazard Mater. (2010). https://doi.org/10.1016/j.jhazmat.2010.01.010

    Article  Google Scholar 

  62. Xu, M., Yin, P., Liu, X., Tang, Q., Qu, R., Xu, Q.: Utilization of rice husks modified by organomultiphosphonic acids as low-cost biosorbents for enhanced adsorption of heavy metal ions. Bioresour. Technol. (2013). https://doi.org/10.1016/j.biortech.2013.09.075

    Article  Google Scholar 

  63. Shalaby, N.H., Ewais, E.M.M., Elsaadany, R.M., Ahmed, A.: Rice husk templated water treatment sludge as low cost dye and metal adsorbent. Egypt J. Pet. 26, 661–668 (2017). https://doi.org/10.1016/J.EJPE.2016.10.006

    Article  Google Scholar 

  64. Ajmal, M., Ali Khan Rao, R., Anwar, S., Ahmad, J., Ahmad, R.: Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 86, 147–149 (2003). https://doi.org/10.1016/S0960-8524(02)00159-1

  65. Chiu, A.C.F., Akesseh, R., Moumouni, I.M., Xiao, Y.: Laboratory assessment of rice husk ash (RHA) in the solidification/stabilization of heavy metal contaminated slurry. J. Hazard Mater. (2019). https://doi.org/10.1016/j.jhazmat.2019.02.051

    Article  Google Scholar 

  66. Williams, P.T., Nugranad, N.: Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy (2000). https://doi.org/10.1016/S0360-5442(00)00009-8

    Article  Google Scholar 

  67. Soltani, N., Bahrami, A., Pech-Canul, M.I., González, L.A.: Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. (2015). https://doi.org/10.1016/j.cej.2014.11.056

    Article  Google Scholar 

  68. Senthil Kumar, P., Ramakrishnan, K., Dinesh Kirupha, S., Sivanesan, S.: Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazil. J. Chem. Eng. 27, 347–355 (2010). https://doi.org/10.1590/s0104-66322010000200013

    Article  Google Scholar 

  69. Romano, J.S., Rodrigues, F.A.: Cements obtained from rice hull: encapsulation of heavy metals. J. Hazard Mater. (2008). https://doi.org/10.1016/j.jhazmat.2007.11.051

    Article  Google Scholar 

  70. Sharifikolouei, E., Baino, F., Galletti, C., Fino, D., Ferraris, M.: Adsorption of Pb and Cd in rice husk and their immobilization in porous glass-ceramic structures. Int. J. Appl. Ceram. Technol. 17, 105–112 (2020). https://doi.org/10.1111/ijac.13356

    Article  CAS  Google Scholar 

  71. Mao, L., Wu, Y., Zhang, W., Huang, Q.: The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing. J. Environ. Manage. (2019). https://doi.org/10.1016/j.jenvman.2018.10.120

    Article  Google Scholar 

  72. Song, H., Wei, L., Ji, Y., Cao, L., Cheng, F.: Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing. Adv. Powder Technol. (2018). https://doi.org/10.1016/j.apt.2018.03.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Sharifikolouei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharifikolouei, E., Ferraris, M. (2021). Potential Role of Vitrification and Waste Vitrification in the Circular Economy. In: Baino, F., Tomalino, M., Tulyaganov, D. (eds) Ceramics, Glass and Glass-Ceramics. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-85776-9_10

Download citation

Publish with us

Policies and ethics