Skip to main content

The Horizontal Linear Complementarity Problem and Robustness of the Related Matrix Classes

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2021)

Abstract

We consider the horizontal linear complementarity problem and we assume that the input data have the form of intervals, representing the range of possible values. For the classical linear complementarity problem, there are known various matrix classes that identify interesting properties of the problem (such as solvability, uniqueness, convexity, finite number of solutions or boundedness). Our aim is to characterize the robust version of these properties, that is, to check them for all possible realizations of interval data. We address successively the following matrix classes: nonnegative matrices, Z-matrices, semimonotone matrices, column sufficient matrices, principally nondegenerate matrices, \(R_0\)-matrices and R-matrices. The reduction of the horizontal linear complementarity problem to the classical one, however, brings complicated dependencies between interval parameters, resulting in some cases to higher computational complexity.

Supported by the Czech Science Foundation Grants P403-18-04735S (M. Hladík) and P403-20-17529S (M. Rada).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alefeld, G., Schäfer, U.: Iterative methods for linear complementarity problems with interval data. Computing 70(3), 235–259 (2003). https://doi.org/10.1007/s00607-003-0014-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung, S.J.: NP-completeness of the linear complementarity problem. J. Optim. Theor. Appl. 60(3), 393–399 (1989)

    Article  MathSciNet  Google Scholar 

  3. Cottle, R.W.: Linear complementarity since 1978. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications, NOIA, vol. 79, pp. 239–257. Springer, Boston (2005). https://doi.org/10.1007/0-387-24276-7_18

    Chapter  Google Scholar 

  4. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. revised ed of the 1992 original edn. SIAM, Philadelphia, PA (2009)

    Google Scholar 

  5. Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  6. Garloff, J., Adm, M., Titi, J.: A survey of classes of matrices possessing the interval property and related properties. Reliab. Comput. 22, 1–10 (2016)

    MathSciNet  Google Scholar 

  7. Gowda, M.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett. 8(1), 97–100 (1995)

    Article  MathSciNet  Google Scholar 

  8. Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hladík, M.: Transformations of interval linear systems of equations and inequalities. Linear Multilinear Algebra 65(2), 211–223 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hladík, M.: Stability of the linear complementarity problem properties under interval uncertainty. Cent. Eur. J. Oper. Res. 29, 875–889 (2021)

    Google Scholar 

  11. Hladík, M.: Tolerances, robustness and parametrization of matrix properties related to optimization problems. Optimization 68(2–3), 667–690 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hladík, M.: An overview of polynomially computable characteristics of special interval matrices. In: Kosheleva, O., et al. (eds.) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, Studies in Computational Intelligence, vol. 835, pp. 295–310. Springer, Cham (2020)

    Google Scholar 

  13. Horáček, J., Hladík, M., Černý, M.: Interval linear algebra and computational complexity. In: Bebiano, N. (ed.) MAT-TRIAD 2015. SPMS, vol. 192, pp. 37–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49984-0_3

    Chapter  MATH  Google Scholar 

  14. Kreinovich, V.: Why intervals? a simple limit theorem that is similar to limit theorems from statistics. Reliab. Comput. 1(1), 33–40 (1995)

    Article  MathSciNet  Google Scholar 

  15. Kreinovich, V.: Why intervals? why fuzzy numbers? towards a new justification. In: Mendel, J.M., Omori, T., Ya, X. (eds.) 2007 IEEE Symposium on Foundations of Computational Intelligen, pp. 113–119 (2007)

    Google Scholar 

  16. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  17. Ma, H., Xu, J., Huang, N.: An iterative method for a system of linear complementarity problems with perturbations and interval data. Appl. Math. Comput. 215(1), 175–184 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theor. Appl. 180(2), 500–517 (2019)

    Article  MathSciNet  Google Scholar 

  19. Mezzadri, F., Galligani, E.: A modulus-based nonsmooth Newton’s method for solving horizontal linear complementarity problems. Optimization Letters 15(5), 1785–1798 (2019). https://doi.org/10.1007/s11590-019-01515-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia, PA (2009)

    Book  Google Scholar 

  21. Murty, K.G., Yu, F.T.: Linear Complementarity, Internet Linear and Nonlinear Programming (1997)

    Google Scholar 

  22. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

    Article  MathSciNet  Google Scholar 

  24. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electron. J. Linear Algebra 18, 500–512 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Samelson, H., Thrall, R.M., Wesler, O.: A partition theorem for euclidean \(n\)-spaces. Proc. Am. Math. Soc. 9, 805–807 (1958)

    MathSciNet  MATH  Google Scholar 

  26. Sznajder, R., Gowda, M.: Generalizations of P\({}_0\)- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)

    Article  MathSciNet  Google Scholar 

  27. Tseng, P.: Co-NP-completeness of some matrix classification problems. Math. Program. 88(1), 183–192 (2000)

    Article  MathSciNet  Google Scholar 

  28. Tütüncü, R.H., Todd, M.J.: Reducing horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 717–729 (1995)

    Article  MathSciNet  Google Scholar 

  29. Zheng, H., Vong, S.: On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of \(H_+\)-matrices. Appl. Math. Comput. 369(124890), 1–6 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hladík, M., Rada, M. (2021). The Horizontal Linear Complementarity Problem and Robustness of the Related Matrix Classes. In: Dorronsoro, B., Amodeo, L., Pavone, M., Ruiz, P. (eds) Optimization and Learning. OLA 2021. Communications in Computer and Information Science, vol 1443. Springer, Cham. https://doi.org/10.1007/978-3-030-85672-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85672-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85671-7

  • Online ISBN: 978-3-030-85672-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics