Skip to main content

Evolutionary Approach to the Optimal Design of Fuzzy Controllers for Trajectory Tracking

  • Conference paper
  • First Online:
Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation (INFUS 2021)

Abstract

This paper presents three configurations for evolving the membership functions’ parameters for a path-following fuzzy controller. Designers of fuzzy controllers have many options when selecting which parameters and how the optimization algorithm adjusts them. The experiments obtained excellent results with a relatively simple controller using three membership for each of the variables. We tested the proposed controller by a robot simulation that follows a path using a rear-wheel tracking technique. We optimized the controller’s parameters using a genetic algorithm that consisted of a population of chromosomes containing the parameters of a controller. Each individual’s fitness in the populations was determined by calculating the root-mean-square error resulting from each simulation. We have observed, changes in the selection of parameters that parameters to optimize, we tested four, eight, and 18, affect the results obtained and are essential to minimize the total time of evaluations and a minimum possible error. We also tested two ranges for the random values used for initializing the population and verify that this selection also impacts the algorithms’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/scikit-fuzzy/scikit-fuzzy.

References

  1. Beleño, R.D.H., Vítor, G.B., Ferreira, J.V., Meirelles, P.S.: Planeación y seguimiento de trayectorias de un vehículo terrestre con base en el control de dirección en un ambiente real. Scientia et technica 19(4), 407–412 (2014)

    Google Scholar 

  2. Bernal, E., Lagunes, M.L., Castillo, O., Soria, J., Valdez, F.: Optimization of type-2 fuzzy logic controller design using the GSO and FA algorithms. Int. J. Fuzzy Syst. 23(1), 42–57 (2021)

    Article  Google Scholar 

  3. Castillo, O., Amador-Angulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. 460, 476–496 (2018)

    Article  Google Scholar 

  4. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Article  Google Scholar 

  5. Castillo, O., Neyoy, H., Soria, J., García, M., Valdez, F.: Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int. J. Adv. Rob. Syst. 10(1), 51 (2013)

    Article  Google Scholar 

  6. Coello, C. (ed.): Computación Evolutiva. Academia Mexicana de Computación, A. C. (2019). http://amexcomp.org.mx/files/ComputacionEvolutiva.pdf

  7. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

    MathSciNet  Google Scholar 

  8. Guerrero-Castellanos, J., Villarreal-Cervantes, M., Sánchez-Santana, J., Ramírez-Martínez, S.: Trajectory tracking of a mobile robot (3, 0) by means of bounded control. RIAI-Revista Iberoamericana de Automatica e Informatica Industrial, 426–434 (2014)

    Google Scholar 

  9. Hernandez, E., Castillo, O., Soria, J.: Optimization of fuzzy controllers for autonomous mobile robots using the grey wolf optimizer. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2019)

    Google Scholar 

  10. Lagunes, M.L., Castillo, O., Soria, J.: Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds.) NAFIPS 2017. AISC, vol. 648, pp. 131–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67137-6_14

    Chapter  Google Scholar 

  11. Lagunes, M.L., Castillo, O., Soria, J.: Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the firefly algorithm. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. SCI, vol. 749, pp. 199–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71008-2_16

    Chapter  Google Scholar 

  12. Mancilla, A., Castillo, O., Valdez, M.G.: Optimization of fuzzy logic controllers with distributed bio-inspired algorithms. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. SCI, vol. 915, pp. 1–11. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58728-4_1

    Chapter  Google Scholar 

  13. Martinez-Soto, R., Castillo, O., Aguilar, L.T., Baruch, I.S.: Bio-inspired optimization of fuzzy logic controllers for autonomous mobile robots. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6. IEEE (2012)

    Google Scholar 

  14. Mateos, A.: Algoritmos evolutivos y algoritmos genéticos. Ingeniería de Telecomunicación. Universidad Carlos III de Madrid, Inteligencia en Redes de Comunicaciones (2004)

    Google Scholar 

  15. Melin, P., Astudillo, L., Castillo, O., Valdez, F., Garcia, M.: Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm. Expert Syst. Appl. 40(8), 3185–3195 (2013)

    Article  Google Scholar 

  16. Muelas, S., Pena, J., LaTorre, A., Robles, V.: Algoritmos distribuidos heterogéneos para problemas de optimización continua. In: VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB, pp. 425–432 (2009)

    Google Scholar 

  17. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  18. Pamucar, D., Ćirović, G.: Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty conditions. Decis. Making Appl. Manage. Eng. 1(1), 13–37 (2018)

    Article  Google Scholar 

  19. Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., Paques, A.: Pythonrobotics: a python code collection of robotics algorithms. CoRR arxiv:1808.10703 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandra Mancilla , Oscar Castillo or Mario Garcia Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancilla, A., Castillo, O., Valdez, M.G. (2022). Evolutionary Approach to the Optimal Design of Fuzzy Controllers for Trajectory Tracking. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds) Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Lecture Notes in Networks and Systems, vol 307. Springer, Cham. https://doi.org/10.1007/978-3-030-85626-7_54

Download citation

Publish with us

Policies and ethics