Skip to main content

Bioprospecting of Industrially Important Mushrooms

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1333 Accesses

Abstract

Today mankind confronts a heap of challenges for survival due to the advent of health-related issues, drug resistances, and imbalances in the ecosystems. In the era of technology, man has perpetually been endeavoring to search for diverse biotic components that can potentially be addressing the complicated life troubling issues. In this context, the fungi in general and mushrooms in particular have played an indispensable role in protecting and curing various health problems. Macrofungi or mushrooms are contemplated as biological and genetic resources with high nutritional, medicinal, and biotechnological potential. The interest in mushrooms has cultivated momentously in the last few decades, being promoted by the discovery of a repertoire of chemically disparate biologically active compounds having biopharmaceutical applications arbitrated through defined mechanisms (anti-tumor, anti-inflammatory, anti-cancer, anti-oxidative hepatoprotective, anti-viral, immunomodulating hypocholesterolemic, and anti-bacterial). The escalating knowledge about chemistry, biotechnology, and molecular biology of mushrooms as well as an improvement in screening methods has led to rapid surge in the application of mushrooms for medicinal purposes which in turn, have galvanized the development of several novel mycopharmaceuticals based on mushroom bioprospection. Taking into consideration the importance of mushrooms, this chapter aims to zero in on the nutritive value, functionalities of mushrooms, and potential applications in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z (2021) Industrially important fungi for sustainable development, Vol-1: biodiversity and ecological perspective. Springer, Cham

    Google Scholar 

  • Adachi Y, Okazaki M, Ohno N, Yadomae T (1994) Enhancement of cytokine production by macrophages stimulated with (1→ 3)-β-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull 17:1554–1560

    CAS  PubMed  Google Scholar 

  • Adotey G, Quarcoo A, Holliday J, Fofie S, Saaka B (2011) Effect of immunomodulating and antiviral agent of medicinal mushrooms (immune assist 24/7 TM) on CD4+ T-lymphocyte counts of HIV-infected patients. Int J Med Mushrooms 13:109–113

    PubMed  Google Scholar 

  • Agrahar-Murugkar D, Subbulakshmi G (2005) Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem 89:599–603

    CAS  Google Scholar 

  • Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5:1–12

    Google Scholar 

  • Ahmad MF (2018) Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 107:507–519

    CAS  PubMed  Google Scholar 

  • Ahmed M, Abdullah N, Ahmed KU, Bhuyan M (2013) Yield and nutritional composition of oyster mushroom strains newly introduced in Bangladesh. Pesq Agrop Brasileira 48:197–202

    Google Scholar 

  • Ahn W-S, Kim D-J, Chae G-T, Lee J-M, Bae S-M, Sin J-I et al (2004) Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int J Gynecol Cancer 14:589–594

    PubMed  Google Scholar 

  • Akwaowo EU, Ndon BA, Etuk EU (2000) Minerals and antinutrients in fluted pumpkin (Telfairia occidentalis hook f.). Food Chem 70:235–240

    CAS  Google Scholar 

  • Akyuz M, Onganer A, Erecevit P, Kirbag S (2010) Antimicrobial activity of some edible mushrooms in the eastern and Southeast Anatolia region of Turkey. Gazi Univ J Sci 23:125–130

    Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fifty years of drug discovery from fungi. Fungal Divers 50:3–19

    Google Scholar 

  • Arockiasamy S, Krishnan IPG, Anandakrishnan N, Seenivasan S, Sambath A, Venkatasubramani JP (2008) Enhanced production of laccase from Coriolus versicolor NCIM 996 by nutrient optimization using response surface methodology. Appl Biochem Biotechnol 151:371–379

    CAS  PubMed  Google Scholar 

  • Ashraf SA, Abd Elmoneim OE, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M et al (2020) Cordycepin for health and wellbeing: a potent bioactive metabolite of an Entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules 25:1–21

    Google Scholar 

  • Atila F, Owaid MN, Shariati MA (2021) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotechnol Food Sci 2021:281–286

    Google Scholar 

  • Atri N, Sharma S, Joshi R, Gulati A, Gulati A (2012) Amino acid composition of five wild Pleurotus species chosen from north West India. Eur J Biol Res 4:31–34

    Google Scholar 

  • Aydoğdu M, Golukcu M (2017) Nutritional value of Huitlacoche, maize mushroom caused by Ustilago maydis. Food Sci Technol 37:531–535

    Google Scholar 

  • Ayeka PA (2018) Potential of mushroom compounds as immunomodulators in cancer immunotherapy: a review. Evid Based Complement Alternat Med 2018:1–9

    Google Scholar 

  • Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66–101

    CAS  PubMed  Google Scholar 

  • Badalyan SM, Singh M Potential of mushroom bioactive molecules to develop healthcare biotech products. In: Proceedings of the 8th International Conference on mushroom biology and mushroom products (ICMBMP8), 2014. Citeseer, pp 373–378

    Google Scholar 

  • Bandara A, Mortimer P, Vadthanarat S, Xingrong P, Karunarathna S, Hyde K et al (2020) First successful domestication of a white strain of Auricularia cornea from Thailand. Stud Fungi 5:420–434

    Google Scholar 

  • Bandara AR, Karunarathna SC, Mortimer PE, Hyde KD, Khan S, Kakumyan P et al (2017a) First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol Prog 16:1029–1039

    Google Scholar 

  • Bandara AR, Karunarathna SC, Phillips AJ, Mortimer PE, Xu J, Kakumyan P et al (2017b) Diversity of AuriculariaAuriculariaceae, Auriculariales in Thailand. Phytotax 292:19–34

    Google Scholar 

  • Bandara AR, Rapior S, Mortimer PE, Kakumyan P, Hyde KD, Xu J (2019) A review of the polysaccharide, protein and selected nutrient content of Auricularia, and their potential pharmacological value. Mycosphere J 10:579–607

    Google Scholar 

  • Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira IC (2007) Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem 105:140–145

    CAS  Google Scholar 

  • Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira IC (2008) Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 56:3856–3862

    CAS  PubMed  Google Scholar 

  • Bhardwaj K, Sharma A, Tejwan N, Bhardwaj S, Bhardwaj P, Nepovimova E et al (2020) Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: a review. J Fungi 6:1–21

    Google Scholar 

  • Bhushan A, Kulshreshtha M (2018) The medicinal mushroom Agaricus bisporus: review of phytopharmacology and potential role in the treatment of various diseases. J Nat Sci Med 1:4–9

    Google Scholar 

  • Biedron R, Tangen J, Maresz K, Hetland G (2012) Agaricus blazei Murill-immunomodulatory properties and health benefits. Funct Foods Health Dis 2:428–447

    Google Scholar 

  • Bijalwan A, Bahuguna K, Vasishth A (2020) Insights of medicinal mushroom (Ganoderma lucidum): prospects and potential in India. Biodivers Int J 4:202–209

    Google Scholar 

  • Bisen P, Baghel RK, Sanodiya BS, Thakur GS, Prasad G (2010) Lentinus edodes: a macrofungus with pharmacological activities. Curr Med Chem 17:2419–2430

    CAS  PubMed  Google Scholar 

  • Bishop KS, Kao CH, Xu Y, Glucina MP, Paterson RRM, Ferguson LR (2015) From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 114:56–65

    CAS  PubMed  Google Scholar 

  • Bobek P, Ozdín Ĺ, Kuniak Ĺ (1997) Effect of oyster mushroom and isolated β-glucan on lipid peroxidation and on the activities of antioxidative enzymes in rats fed the cholesterol diet. J Nutr Biochem 8:469–471

    CAS  Google Scholar 

  • Breene WM (1990) Nutritional and medicinal value of specialty mushrooms. J Food Prot 53:883–894

    CAS  PubMed  Google Scholar 

  • Bulam S, Üstün NŞ, Pekşen A (2019) Health benefits of Ganoderma lucidum as a medicinal mushroom. Turkish J Agric-Food Sci Technol 7:84–93

    Google Scholar 

  • Cai M, Lin Y, Luo Y-L, Liang H-H, Sun P (2015) Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). Int J Med Mushrooms 17:591

    PubMed  Google Scholar 

  • Cao Y, Yuan H-S (2013) Ganoderma mutabile sp. nov. from southwestern China based on morphological and molecular data. Mycol Prog 12:121–126

    Google Scholar 

  • Carneiro AA, Ferreira IC, Dueñas M, Barros L, Da Silva R, Gomes E et al (2013) Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem 138:2168–2173

    CAS  PubMed  Google Scholar 

  • Chan K-M, Yue GG-L, Li P, Wong EC-W, Lee JK-M, Kennelly EJ et al (2017) Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool. J Chromatogr A 1487:162–167

    CAS  PubMed  Google Scholar 

  • Chang AKT, Frias RR Jr, Alvarez LV, Bigol UG, Guzman JPMD (2019) Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal Agric Biotechnol 17:189–195

    Google Scholar 

  • Chang Y-C, Chow Y-H, Sun H-L, Liu Y-F, Lee Y-T, Lue K-H et al (2014) Alleviation of respiratory syncytial virus replication and inflammation by fungal immunomodulatory protein FIP-fve from Flammulina velutipes. Antivir Res 110:124–131

    CAS  PubMed  Google Scholar 

  • Chang YS, Lee SS (2004) Utilisation of macrofungi species in Malaysia. Fungal Divers 15:15–22

    Google Scholar 

  • Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh M (2018) Medicinal mushroom: boon for therapeutic applications. 3. Biotech 8:1–20

    Google Scholar 

  • Chen C, Chu H, Hao J, Li Y (2006) Influences of selenium-rich protein and polysaccharide extracted from selenium-rich Agaricus blazei on S180 sarcoma bearing mice. Zhongyaocai 29:1215–1217

    CAS  Google Scholar 

  • Chen G-t, Ma X-m, Liu S-t, Liao Y-l, Zhao G-q (2012) Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydr Polym 89:61–66

    CAS  PubMed  Google Scholar 

  • Chen N-H, Liu J-W, Zhong J-J (2010) Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol Rep 62:150–163

    CAS  PubMed  Google Scholar 

  • Chen S, Yong T, Xiao C, Su J, Zhang Y, Jiao C et al (2018) Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J Funct Foods 43:196–205

    CAS  Google Scholar 

  • Chen X, Ji H, Zhang C, Yu J, Liu A (2020) Structural characterization and antitumor activity of a novel polysaccharide from Grifola frondosa. J Food Meas Charact 14:272–282

    Google Scholar 

  • Cheng C, Yang M, Yu K, Guan S, Tao S, Millar A et al (2012b) Identification of metabolites of ganoderic acid D by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Drug Metab Dispos 40:2307–2314

    CAS  PubMed  Google Scholar 

  • Cheng C-R, Li Y-F, Xu P-P, Feng R-H, Yang M, Guan S-H et al (2012a) Preparative isolation of triterpenoids from Ganoderma lucidum by counter-current chromatography combined with pH-zone-refining. Food Chem 130:1010–1016

    CAS  Google Scholar 

  • Cheng CR, Yang M, Wu ZY, Wang Y, Zeng F, Wu WY et al (2011) Fragmentation pathways of oxygenated tetracyclic triterpenoids and their application in the qualitative analysis of Ganoderma lucidum by multistage tandem mass spectrometry. Rapid Commun Mass Spectrom 25:1323–1335

    CAS  PubMed  Google Scholar 

  • Cheng C-R, Yang M, Yu K, Guan S-H, Wu X-H, Wu W-Y et al (2013) Metabolite identification of crude extract from Ganoderma lucidum in rats using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J Chromatogr B 941:90–99

    CAS  Google Scholar 

  • Cheng C-R, Yue Q-X, Wu Z-Y, Song X-Y, Tao S-J, Wu X-H et al (2010) Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 71:1579–1585

    CAS  PubMed  Google Scholar 

  • Cheung P (2010) The nutritional and health benefits of mushrooms. Nutr Bull 35:292–299

    Google Scholar 

  • Cheung PC (2013) Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Human Wellness 2:162–166

    Google Scholar 

  • Chihara G, Hamuro J, Maeda YY, Arai Y, Fukuoka F (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) sing.(an edible mushroom). Cancer Res 30:2776–2781

    CAS  PubMed  Google Scholar 

  • Choi D, Park S-S, Ding J-L, Cha W-S (2007) Effects of Fomitopsis pinicola extracts on antioxidant and antitumor activities. Biotechnol Bioprocess Eng 12:516

    CAS  Google Scholar 

  • Chu KK, Ho SS, Chow AH (2002) Coriolus versicolor: a medicinal mushroom with promising immunotherapeutic values. J Clin Pharmacol 42:976–984

    PubMed  Google Scholar 

  • Dai Y-C, Yang Z-L, Cui B-K, Yu C-J, Zhou L-W (2009) Species diversity and utilization of medicinal mushrooms and fungi in China. Int J Med Mushrooms 11

    Google Scholar 

  • Damte D, Reza MA, Lee S-J, Jo W-S, Park S-C (2011) Anti-inflammatory activity of dichloromethane extract of Auricularia auricula-judae in RAW264. 7 cells. Toxicol Res 27:11–14

    PubMed  PubMed Central  Google Scholar 

  • de Oliveira JM, Jordao B, Ribeiro LR, da Eira AF, Mantovani M (2002) Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food Chem Toxicol 40:1775–1780

    Google Scholar 

  • De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers 55:1–35

    Google Scholar 

  • De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA et al (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40

    Google Scholar 

  • Deng G, Lin H, Seidman A, Fornier M, D’Andrea G, Wesa K et al (2009) A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135:1215–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J-S, Huang S-S, Lin T-H, Lee M-M, Kuo C-C, Sung P-J et al (2013) Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. J Agric Food Chem 61:5064–5071

    CAS  PubMed  Google Scholar 

  • Devi KSP, Roy B, Patra P, Sahoo B, Islam SS, Maiti TK (2013) Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia. Carbohydr Polym 94:857–865

    CAS  PubMed  Google Scholar 

  • Dong C-H, Yao Y-J (2008) In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. LWT-Food Sci Technol 41:669–677

    CAS  Google Scholar 

  • Dou H, Chang Y, Zhang L (2019) Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Prog Mol Biol Transl Sci 163:361–381

    CAS  PubMed  Google Scholar 

  • Duc P (2005) Mushrooms and cultivation of mushrooms in Vietnam. Mushroom Growers’ Handbook 2

    Google Scholar 

  • El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31:668–677

    PubMed  Google Scholar 

  • El-Fakharany EM, Haroun BM, Ng T, Redwan E-RM (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17:1031–1039

    CAS  PubMed  Google Scholar 

  • Elkhateeb WA (2020) What medicinal mushroom can do. J Chem Res 5:106–118

    Google Scholar 

  • Elkhateeb WA, Daba GM, Thomas PW, Wen T-C (2019) Medicinal mushrooms as a new source of natural therapeutic bioactive compounds. Egypt Pharm J 18:88–101

    Google Scholar 

  • Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J (2012) Proteins of higher fungi–from forest to application. Trends Biotechnol 30:259–273

    CAS  PubMed  Google Scholar 

  • Feng Y-L, Zhao Y-Y, Ding F, Xi Z-H, Tian T, Zhou F et al (2013) Chemical constituents of surface layer of Poria cocos and their pharmacological properties (I). Zhongguo Zhong Yao Za Zhi Zhongguo zhongyao zazhi China Journal of Chinese Materia Medica 38:1098–1102

    CAS  PubMed  Google Scholar 

  • Friedman M (2016) Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5:80

    PubMed Central  Google Scholar 

  • Fu H, De S, Ho C (2002) Antioxidant and free radical scavenging activities of edible mushrooms. J Food Lipids 9:35–43

    CAS  Google Scholar 

  • Fukushima-Sakuno E (2020) Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes. J Antibiot 73:687–696

    CAS  Google Scholar 

  • Galor S, Yuen J, Buswell J, Benzie I (2011) Ganoderma lucidum (Lingzhi or Reishi), a medicinal mushroom in herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor and Francis, Florida

    Google Scholar 

  • Gao J-J, Min B-S, Ahn E-M, Nakamura N, Lee H-K, Hattori M (2002) New triterpene aldehydes, lucialdehydes A—C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem Pharm Bull 50:837–840

    CAS  Google Scholar 

  • Gao Y, Wang P, Wang Y, Wu L, Wang X, Zhang K et al (2017) In vitro and in vivo activity of Fomitopsis pinicola (sw. Ex fr.) karst chloroform (fpkc) extract against s180 tumor cells. Cell Physiol Biochem 44:2042–2056

    CAS  PubMed  Google Scholar 

  • Gao Y, Zhou S, Jiang W, Huang M, Dai X (2003) Effects of Ganopoly®(a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Investig 32:201–215

    Google Scholar 

  • Gaylan CM, Estebal JC, Tantengco OAG, Ragragio EM (2018) Anti-staphylococcal and antioxidant properties of crude ethanolic extracts of macrofungi collected from the Philippines. Pharm J 10:106–109

    CAS  Google Scholar 

  • Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42:577–587

    CAS  Google Scholar 

  • Gonzaga MLC, Bezerra DP, Alves APNN, de Alencar NMN, de Oliveira MR, Lima MW et al (2009) In vivo growth-inhibition of sarcoma 180 by an α-(1→ 4)-glucan–β-(1→ 6)-glucan-protein complex polysaccharide obtained from Agaricus blazei Murill. J Nat Med 63:32–40

    CAS  PubMed  Google Scholar 

  • González A, Atienza V, Montoro A, Soriano JM (2020) Use of Ganoderma lucidum (Ganodermataceae, Basidiomycota) as radioprotector. Nutrients 12:1143

    PubMed Central  Google Scholar 

  • Goto S, Kamada K, Soh Y, Ihara Y, Kondo T (2002) Significance of nuclear glutathione S-transferase π in resistance to anti-cancer drugs. Jpn J Cancer Res 93:1047–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregori A, Švagelj M, Voglar D, Berovic M (2016) Growth characteristics and ergosterol content of Grifola frondosa in various solid-state substrates. Chem Biochem Eng Q 30:183–188

    CAS  Google Scholar 

  • Guan G, Wang H, Ng T (2007) A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. Bioch Biophys Acta 1770:1593–1597

    CAS  Google Scholar 

  • Guo Z, Chen W, Dai G, Huang Y (2020) Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int J Mol Med 45:141–150

    CAS  PubMed  Google Scholar 

  • Habtemariam S (2020) Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: targets and efficacy. Biomedicine 8:135

    CAS  Google Scholar 

  • Han Y, Ma L, Bao H, Bau T, Li Y (2020) Preventive effect of small molecular fraction of Irpex lacteus (Agaricomycetes) fruiting body against chronic nephritis in mice and identification of active compounds. Int J Med Mushrooms 22:313–323

    PubMed  Google Scholar 

  • Hapuarachchi K, Wen T, Jeewon R, Wu X, Kang J, Hyde K (2016) Mycosphere essays 7. Ganoderma lucidum-are the beneficial anti-cancer properties substantiated? Mycosphere 7:305–332

    Google Scholar 

  • Hassan MAA, Rouf R, Tiralongo E, May TW, Tiralongo J (2015) Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 16:7802–7838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. The Fungal kingdom:79–95

    Google Scholar 

  • He X, Wang X, Fang J, Chang Y, Ning N, Guo H et al (2017) Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. Int J Biol Macromol 101:910–921

    CAS  PubMed  Google Scholar 

  • He Y, Li X, Hao C, Zeng P, Zhang M, Liu Y et al (2018) Grifola frondosa polysaccharide: a review of antitumor and other biological activity studies in China. Discov Med 25:159–176

    PubMed  Google Scholar 

  • Hetland G, Eide DM, Tangen JM, Haugen MH, Mirlashari MR, Paulsen JE (2016) The Agaricus blazei-based mushroom extract, Andosan™, protects against intestinal tumorigenesis in the A/J Min/+ Mouse. PLoS One 11:e0167754

    PubMed  PubMed Central  Google Scholar 

  • Hetland G, Johnson E, Bernardshaw SV, Grinde B (2021) Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand J Immunol 93:e12937

    CAS  PubMed  Google Scholar 

  • Hetland G, Johnson E, Lyberg T, Kvalheim G (2011) The mushroom Agaricus blazei Murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation. Adv Pharmacol Sci 2011

    Google Scholar 

  • Hishida I, Nanba H, Kuroda H (1988) Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (maitake). Chem Pharm Bull 36:1819–1827

    CAS  Google Scholar 

  • Hobbs C (1995) Mushrooms, an exploration of tradition, healing and culture. Botanical Press, Santa Cruz, California

    Google Scholar 

  • Hobbs C (2004) Medicinal value of Turkey tail fungus Trametes versicolor (L.: Fr.) Pilat (Aphyllophoromycetideae). A literature review. Int J Med Mushrooms 6:195–218

    CAS  Google Scholar 

  • Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an α-glucan from fruit body of maitake (Grifola frondosa) on KK-ay mice. J Pharm Pharmacol 59:575–582

    PubMed  Google Scholar 

  • Hsu P-Y, Lin Y-H, Yeh E-L, Lo H-C, Hsu T-H, Su C-C (2017) Cordycepin and a preparation from Cordyceps militaris inhibit malignant transformation and proliferation by decreasing EGFR and IL-17RA signaling in a murine oral cancer model. Oncotarget 8:93712

    PubMed  PubMed Central  Google Scholar 

  • Hsu W-k, Hsu T-h, Lin F-y, Cheng Y-k, Yang JP-W (2013) Separation, purification, and α-glucosidase inhibition of polysaccharides from Coriolus versicolor LH1 mycelia. Carbohydr Polym 92:297–306

    CAS  PubMed  Google Scholar 

  • Huang H-Y, Chieh S-Y, Tso TK, Chien T-Y, Lin H-T, Tsai Y-C (2011a) Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. J Ethnopharmacol 133:460–466

    PubMed  Google Scholar 

  • Huang S-J, Tsai S-Y, Lin S-Y, Liang C-H, Mau J-L (2011b) Nonvolatile taste components of culinary-medicinal maitake mushroom, Grifola frondosa (dicks.: Fr.) SF Gray. Int J Med Mushrooms 13:265–272

    CAS  PubMed  Google Scholar 

  • Ikekawa T (2001) Beneficial effects of edible and medicinal mushrooms on health care. Int J Med Mushrooms 3:1–8

    Google Scholar 

  • Inácio FD, Ferreira RO, CAVD A, Brugnari T, Castoldi R, Peralta RM et al (2015) Proteases of wood rot fungi with emphasis on the genus Pleurotus. Biomed Res Int 2015:1–10

    Google Scholar 

  • Ingold C (1980) Flammulina velutipes. Bull Br Mycol Soc 14:112–118

    Google Scholar 

  • Irawati D, Hayashi C, Takashima Y, Wedatama S, Ishiguri F, Iizuka K et al (2012) Cultivation of the edible mushroom Auricularia polytricha using sawdust based substrate made of three Indonesian commercial plantation species, Falcataria moluccana, Shorea sp., and Tectona grandis. Micologia Aplicada International 24:33–41

    Google Scholar 

  • Ismaya WT, Tjandrawinata RR, Rachmawati H (2020) Lectins from the edible mushroom Agaricus bisporus and their therapeutic potentials. Molecules:25

    Google Scholar 

  • Itoh H, Ito H, Amano H, Noda H (1994) Inhibitory action of a (1→ 6)-β-D-glucan-protein complex (FIII-2-b) isolated from Agaricus blazei Murill (" Himematsutake") on meth a fibrosarcoma-bearing mice and its antitumor mechanism. Jpn J Pharmacol 66:265–271

    CAS  PubMed  Google Scholar 

  • Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol 44:1989–1996

    CAS  PubMed  Google Scholar 

  • Jeong J-W, Jin C-Y, Kim G-Y, Lee J-D, Park C, Kim G-D et al (2010a) Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int Immunopharmacol 10:1580–1586

    CAS  PubMed  Google Scholar 

  • Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G et al (2010b) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56

    CAS  PubMed  Google Scholar 

  • Jiang L, Yu Z, Lin Y, Cui L, Yao S, Lv L et al (2018) Low-molecular-weight polysaccharides from Agaricus blazei Murrill modulate the Th1 response in cancer immunity. Oncol Lett 15:3429–3436

    PubMed  PubMed Central  Google Scholar 

  • Jiménez-Medina E, Berruguilla E, Romero I, Algarra I, Collado A, Garrido F et al (2008) The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis. BMC Cancer 8:1–10

    Google Scholar 

  • Jin Y, Meng X, Qiu Z, Su Y, Yu P, Qu P (2018) Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J Biol Sci 25:991–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnny I, Okon J (2013) Antidiabetic effect of Pleurotus ostreatus (Jacq. Ex Fr) kumm. Mushroom on Alloxan-induced diabetic rats. Indian J Pharm Biol Res 1:31–36

    Google Scholar 

  • Jong S, Birmingham J (1992) Medicinal benefits of the mushroom Ganoderma. Adv Appl Microbiol 37:101–134

    CAS  PubMed  Google Scholar 

  • Jordan J, Hirsch G, Lee T (2008) C. sinensis ablates allograft vasculopathy when used as an adjuvant therapy with cyclosporin a. Transpl Immunol 19:159–166

    CAS  PubMed  Google Scholar 

  • Jose Alves M, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M (2013) A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr Top Med Chem 13:2648–2659

    Google Scholar 

  • Juárez-Montiel M, de León SR, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Revista iberoamericana de micologia 28:69–73

    PubMed  Google Scholar 

  • Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16

    Google Scholar 

  • Kan Y, Chen T, Wu Y, Wu J (2015) Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int J Biol Macromol 72:151–157

    CAS  PubMed  Google Scholar 

  • Karunarathna SC, Chen J, Mortimer P, Xu J, Zhao R, Callac P et al (2016) Mycosphere essay 8: a review of genus Agaricus in tropical and humid subtropical regions of Asia. Mycosphere J 7:417–439

    Google Scholar 

  • Kawagishi H, Inagaki R, Kanao T, Mizuno T, Shimura K, Ito H et al (1989) Fractionation and antitumor activity of the water-in-soluble residue of Agaricus blazei fruiting bodies. Carbohydr Res 186:267–273

    CAS  PubMed  Google Scholar 

  • Khan MA, Amin SR, Uddin MN, Tania M, Alam N (2008) Comparative study of the nutritional composition of oyster mushrooms cultivated in Bangladesh. Bangladesh J Mushroom 2:9–14

    Google Scholar 

  • Khan MA, Khan LA, Hossain MS, Tania M, Uddin MN (2009) Investigation on the nutritional composition of the common edible and medicinal mushrooms cultivated in Bangladesh. Bangladesh J Mushroom 3:21–28

    Google Scholar 

  • Khan MA, Tania M (2012) Nutritional and medicinal importance of Pleurotus mushrooms: an overview. Food Rev Intl 28:313–329

    CAS  Google Scholar 

  • Knežević A, Stajić M, Sofrenić I, Stanojković T, Milovanović I, Tešević V et al (2018) Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS One 13:e0203064

    PubMed  PubMed Central  Google Scholar 

  • Knop D, Yarden O, Hadar Y (2015) The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 99:1025–1038

    CAS  PubMed  Google Scholar 

  • Kopalli SR, Cha K-M, Lee S-H, Hwang S-Y, Lee Y-J, Koppula S et al (2019) Cordycepin, an active constituent of nutrient powerhouse and potential medicinal mushroom Cordyceps militaris Linn., ameliorates age-related testicular dysfunction in rats. Nutrients 11:906

    CAS  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kubo K, Aoki H, Nanba H (1994) Anti-diabetic activity present in the fruit body of Grifola frondosa (maitake). I. Biol Pharm Bull 17:1106–1110

    CAS  PubMed  Google Scholar 

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    PubMed  Google Scholar 

  • Kumar K (2020) Nutraceutical potential and processing aspects of oyster mushrooms (Pleurotus species). Curr Nutr Food Sci 16:3–14

    Google Scholar 

  • Kumar V, Yadav HK (2019) Therapeutic potential of an edible macro-fungus: Ganoderma lucidum (Curtis) P. karst. Indian J Tradit Knowl 18:702–713

    Google Scholar 

  • Kuo C-F, Chen C-C, Lin C-F, Jan M-S, Huang RY, Luo Y-H et al (2007) Abrogation of streptococcal pyrogenic exotoxin B-mediated suppression of phagocytosis in U937 cells by Cordyceps sinensis mycelium via production of cytokines. Food Chem Toxicol 45:278–285

    CAS  PubMed  Google Scholar 

  • Kuo Y-C, Lin C-Y, Tsai W-J, Wu C-L, Chen C-F, Shiao M-S (1994) Growth inhibitors against tumor cells in Cordyceps sinensis other than cordycepin and polysaccharides. Cancer Investig 12:611–615

    CAS  Google Scholar 

  • Lam S, Ng T (2001) First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch Biochem Biophys 393:271–280

    CAS  PubMed  Google Scholar 

  • Lee H-C, Cheng W-Y, Huang BE-G, Hsu Y-H, Huang S-Y (2014) Anti-inflammatory and hypoglycemic efficacy of Poria cocos and Dioscorea opposita in prediabetes mellitus rats. RSC Adv 4:55649–55657

    CAS  Google Scholar 

  • Lee SK, Lee JH, Kim HR, Chun Y, Lee JH, Yoo HY et al (2019) Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomol Ther 9:1–11

    Google Scholar 

  • Lee Y-L, Kim H-J, Lee M-S, Kim J-M, Han J-S, Hong E-K et al (2003) Oral administration of Agaricus blazei (H1 strain) inhibited tumor growth in a sarcoma 180 inoculation model. Exp Anim 52:371–375

    CAS  PubMed  Google Scholar 

  • Lee Y-T, Lee S-S, Sun H-L, Lu K-H, Ku M-S, Sheu J-N et al (2013) Effect of the fungal immunomodulatory protein FIP-fve on airway inflammation and cytokine production in mouse asthma model. Cytokine 61:237–244

    CAS  PubMed  Google Scholar 

  • Lemieszek MK, Langner E, Kaczor J, Kandefer-Szerszen M, Sanecka B, Mazurkiewicz W et al (2009) Anticancer effect of fraction isolated from medicinal birch polypore mushroom, Piptoporus betulinus (bull.: Fr.) P. karst.(Aphyllophoromycetideae): in vitro studies. Int J Med Mushrooms 11:351–364

    CAS  Google Scholar 

  • León-Ramírez CG, Sánchez-Arreguín JA, Ruiz-Herrera J (2014) Ustilago maydis, a delicacy of the Aztec cuisine and a model for research. Nat Res 5:1–12

    Google Scholar 

  • Li F, Gao X, Rao B, Liu L, Dong B, Cui L (2006a) Effects of cordyceps sinensis alcohol extractive on serum interferon-gamma level and splenic T lymphocyte subset in mice with viral myocarditis. Chin J Cell Mol Immunol 22:321–323

    Google Scholar 

  • Li Q-Z, Zheng Y-Z, Zhou X-W (2019a) Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms. Drug Discov Today 24:307–314

    CAS  PubMed  Google Scholar 

  • Li S, Yang F, Tsim KW (2006b) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41:1571–1584

    CAS  PubMed  Google Scholar 

  • Li T-H, Hou C-C, Chang CL-T, Yang W-C (2010) Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid Based Complement Alternat Med 2011:1–8

    Google Scholar 

  • Li X, He Y, Zeng P, Liu Y, Zhang M, Hao C et al (2019b) Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J Cell Mol Med 23:4–20

    CAS  PubMed  Google Scholar 

  • Li Y, Liu Q, Wang H, Ng T (2008) A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta 1780:51–57

    CAS  PubMed  Google Scholar 

  • Li Y, Zhou Y, Wang X, Wang P, Xiao Y, Cheng X et al (2016) Fruit extract from Pyropolyporus fomentarius (L. ex Fr.) Teng induces mitochondria-dependent apoptosis in leukemia cells but enhances immunomodulatory activities of splenic lymphocytes. Nutr Cancer 68:708–717

    PubMed  Google Scholar 

  • Liang C, Tian D, Liu Y, Li H, Zhu J, Li M et al (2019) Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids a, C2, D, F, DM, X and Y. Eur J Med Chem 174:130–141

    CAS  PubMed  Google Scholar 

  • Lin C-H, Sheu G-T, Lin Y-W, Yeh C-S, Huang Y-H, Lai Y-C et al (2010) A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochem 45:1537–1542

    CAS  Google Scholar 

  • Lin J-p, Lian W, L-m X, P-l C (2003) Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs:(I) production of laccase by batch and repeated-batch processes. J Environ Sci 15:1–4

    CAS  Google Scholar 

  • Lin ZB (2009) Lingzhi: from mystery to science. Peking University Medical Press

    Google Scholar 

  • Liu Y, Bastiaan-Net S, Wichers HJ (2020) Current understanding of the structure and function of fungal immunomodulatory proteins. Front Nutr 7:132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen D, You Y, Zeng S, Li Y, Tang Q et al (2016) Nutritional composition of boletus mushrooms from Southwest China and their antihyperglycemic and antioxidant activities. Food Chem 211:83–91

    CAS  PubMed  Google Scholar 

  • Lizárraga-Guerra R, Guth H, López MG (1997) Identification of the most potent odorants in huitlacoche (Ustilago maydis) and austern pilzen (Pleurotus sp.) by aroma extract dilution analysis and static head-space samples. J Agric Food Chem 45:1329–1332

    Google Scholar 

  • Lizarraga-Guerra R, Lopez MG (1998) Monosaccharide and alditol contents of huitlacoche (Ustilago maydis). J Food Compos Anal 11:333–339

    CAS  Google Scholar 

  • Lo H-C, Hsu T-H, Tu S-T, Lin K-C (2006) Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am J Chin Med 34:819–832

    CAS  PubMed  Google Scholar 

  • Luiz R, Jordao B, Da Eira A, Ribeiro L, Mantovani M (2003) Mechanism of anticlastogenicity of Agaricus blazei Murill mushroom organic extracts in wild type CHO (K1) and repair deficient (xrs5) cells by chromosome aberration and sister chromatid exchange assays. Mutat Res Fundam Mol Mech Mutagen 528:75–79

    CAS  Google Scholar 

  • Luo X-j, Li L-l, Deng Q-p, Yu X-f, Yang L-f, Luo F-j et al (2011) Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J Cancer 47:316–325

    CAS  PubMed  Google Scholar 

  • Ma Y, Wang C, Zhang Q, Peng X, Feng Y, Meng X (2018) The effects of polysaccharides from Auricularia auricula (Huaier) in adjuvant anti-gastrointestinal cancer therapy: a systematic review and network meta-analysis. Pharmacol Res 132:80–89

    CAS  PubMed  Google Scholar 

  • Maheshwari S (2013) A guide for white button mushroom (Agaricus bisporus) production. Open Access Sci Rep 2:2–3

    Google Scholar 

  • Mao G-H, Ren Y, Feng W-W, Li Q, Wu H-Y, Zhao T et al (2015) Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa. Carbohydr Polym 134:406–412

    CAS  PubMed  Google Scholar 

  • Martin KR, Brophy SK (2010) Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Exp Biol Med 235:1306–1314

    CAS  Google Scholar 

  • Martinez-Medina GA, Chávez-González ML, Verma DK, Prado-Barragán LA, Martínez-Hernández JL, Flores-Gallegos AC et al (2021) Bio-functional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 77:104326

    CAS  Google Scholar 

  • Masuda Y, Kodama N, Nanba H (2006) Macrophage J774. 1 cell is activated by MZ-fraction (Klasma-MZ) polysaccharide in Grifola frondosa. Mycoscience 47:360–366

    CAS  Google Scholar 

  • Mattila P, Könkö K, Eurola M, Pihlava J-M, Astola J, Vahteristo L et al (2001) Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49:2343–2348

    CAS  PubMed  Google Scholar 

  • Mayell M (2001) Maitake extracts and their therapeutic potential-a review. Altern Med Rev 6:48–60

    CAS  PubMed  Google Scholar 

  • Meng L-Z, Xie J, Lv G-P, Hu D-J, Zhao J, Duan J-A et al (2014) A comparative study on immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi). Nutr Cancer 66:1124–1131

    CAS  PubMed  Google Scholar 

  • Min B-S, GAo J-J, Nakamura N, Hattori M (2000) Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-a and LLC tumor cells. Chem Pharm Bull 48:1026–1033

    CAS  Google Scholar 

  • Minato K-i (2010) Mushrooms: Immunomodulating activity and role in health promotion. In: Watson RR, Zibadi S, Preedy VR (eds) Dietary components and immune function. Humana Press, Totowa, NJ, pp 529–539. https://doi.org/10.1007/978-1-60761-061-8_28

    Chapter  Google Scholar 

  • Mizuno T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T et al (1990) Antitumor activity and some properties of water-soluble polysaccharides from “Himematsutake,” the fruiting body of Agavicus blazei Murill. Agric Biol Chem 54:2889–2896

    CAS  Google Scholar 

  • Mizuno T, Zhuang C (1995) Maitake, Grifola frondosa: pharmacological effects. Food Rev Intl 11:135–149

    CAS  Google Scholar 

  • Na Z, Yan L, Jia-hui L, Juan W, Shuang Y, Nan Z et al (2012) Isolation, purification and bioactivities of polysaccharides from Irpex lacteus. Chem Res Chin Univ 28:249–254

    Google Scholar 

  • Nakamura K, Konoha K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2003) Combined effects of Cordyceps sinensis and methotrexate on hematogenic lung metastasis in mice. Recept Channels 9:329–334

    CAS  PubMed  Google Scholar 

  • Nanba H, Kubo K (1998) Antitumor substance extracted from Grifola. Google Patents,

    Google Scholar 

  • Nayak A, Nayak RN, Bhat K (2010) Antifungal activity of a toothpaste containing Ganoderma lucidum against Candida albicans-an in vitro study. J Int Oral Health 2:51–57

    Google Scholar 

  • Ng T, Wang H (2004) Flammin and velin: new ribosome inactivating polypeptides from the mushroom Flammulina velutipes. Peptides 25:929–933

    CAS  PubMed  Google Scholar 

  • Ngai PH, Ng T (2003) Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci 73:3363–3374

    CAS  PubMed  Google Scholar 

  • Ngai PH, Ng T (2004) A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem Biophys Res Commun 314:988–993

    CAS  PubMed  Google Scholar 

  • Nguyen TL, Chen J, Hu Y, Wang D, Fan Y, Wang J et al (2012a) In vitro antiviral activity of sulfated Auricularia auricula polysaccharides. Carbohydr Polym 90:1254–1258

    CAS  PubMed  Google Scholar 

  • Nguyen TL, Wang D, Hu Y, Fan Y, Wang J, Abula S et al (2012b) Immuno-enhancing activity of sulfated Auricularia auricula polysaccharides. Carbohydr Polym 89:1117–1122

    CAS  PubMed  Google Scholar 

  • Ngwuluka NC, Ochekpe NA, Aruoma OI (2016) Functions of bioactive and intelligent natural polymers in the optimization of drug delivery. In: Hosseini M, Makhlouf ASH (eds) Industrial applications for intelligent polymers and coatings. Springer International Publishing, Cham, pp 165–184. https://doi.org/10.1007/978-3-319-26893-4_8

    Chapter  Google Scholar 

  • Nie A, Chao Y, Zhang X, Jia W, Zhou Z, Zhu C (2020) Phytochemistry and pharmacological activities of Wolfiporia Cocos (FA wolf) Ryvarden & Gilb. Front Pharmacol 11

    Google Scholar 

  • Nithya M, Ambikapathy V, Panneerselvam A (2015) In vivo antioxidant and enzymatic activity of Ganoderma lucidum (Curt. Fr.) P. karst. On mammary cells of DMBA induced Sprague Dawley rats. Int J Curr Microbiol App Sci 4:69–77

    CAS  Google Scholar 

  • Nowak R, Nowacka-Jechalke N, Juda M, Malm A (2018) The preliminary study of prebiotic potential of polish wild mushroom polysaccharides: the stimulation effect on lactobacillus strains growth. Eur J Nutr 57:1511–1521

    CAS  PubMed  Google Scholar 

  • O’Neil E, Nicklas A, Fulgoni III VL (2013) Mushroom intake is associated with better nutrient intake and diet quality: 2001–2010 National Health and Nutrition Examination Survey. Nutrition & Food Sciences

    Google Scholar 

  • Oba K, Teramukai S, Kobayashi M, Matsui T, Kodera Y, Sakamoto J (2007) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curative resections of gastric cancer. Cancer Immunol Immunother 56:905–911

    CAS  PubMed  Google Scholar 

  • Obodai M, Narh Mensah DL, Fernandes Â, Kortei NK, Dzomeku M, Teegarden M et al (2017) Chemical characterization and antioxidant potential of wild Ganoderma species from Ghana. Molecules 22:196

    PubMed Central  Google Scholar 

  • Oh JY, Choi W-S, Lee CH, Park H-J (2011) The ethyl acetate extract of Cordyceps militaris inhibits IgE-mediated allergic responses in mast cells and passive cutaneous anaphylaxis reaction in mice. J Ethnopharmacol 135:422–429

    PubMed  Google Scholar 

  • Okamoto T (2007) Agaricus blazei to improve side effects caused by cancer drugs. Curr Topics Pharmacol 11:27–30

    CAS  Google Scholar 

  • Oli AN, Edeh PA, Al-Mosawi RM, Mbachu NA, Al-Dahmoshi HO, Al-Khafaji NS et al (2020) Evaluation of the phytoconstituents of Auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. Eur J Integr Med 38:101176

    PubMed  PubMed Central  Google Scholar 

  • Ooi VEC, Liu F (1999) A review of pharmacological activities of mushroom polysaccharides. Int J Med Mushrooms 1:195–206

    CAS  Google Scholar 

  • Painuli S, Semwal P, Egbuna C (2020) Mushroom: nutraceutical, mineral, proximate constituents and bioactive component. In: Egbuna C, Dable Tupas G (eds) Functional foods and nutraceuticals: bioactive components. Formulations and Innovations. Springer International Publishing, Cham, pp 307–336. https://doi.org/10.1007/978-3-030-42319-3_17

    Chapter  Google Scholar 

  • Palazzolo E, Letizia Gargano M, Venturella G (2012) The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int J Food Sci Nutr 63:79–83

    CAS  PubMed  Google Scholar 

  • Pandey AT, Pandey I, Hachenberger Y, Krause B-C, Haidar R, Laux P et al (2020) Emerging paradigm against global antimicrobial resistance via bioprospecting of fungi into novel nanotherapeutics development. Trends Food Sci Technol

    Google Scholar 

  • Park SE, Yoo HS, Jin C-Y, Hong SH, Lee Y-W, Kim BW et al (2009) Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem Toxicol 47:1667–1675

    CAS  PubMed  Google Scholar 

  • Patel Y, Naraian R, Singh V (2012) Medicinal properties of Pleurotus species (oyster mushroom): a review. World J Fungal Plant Biol 3:1–12

    CAS  Google Scholar 

  • Paterson RRM (2006) Ganoderma–a therapeutic fungal biofactory. Phytochemistry 67:1985–2001

    CAS  PubMed  Google Scholar 

  • Pérez-Martínez AS, Acevedo-Padilla SA, Bibbins-Martínez M, Galván-Alonso J, Rosales-Mendoza S (2015) A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 33:25–33

    PubMed  Google Scholar 

  • Puri M, Kaur I, Perugini MA, Gupta RC (2012) Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today 17:774–783

    CAS  PubMed  Google Scholar 

  • Qin P, Li X, Yang H, Wang Z-Y, Lu D (2019) Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules 24:2231

    CAS  PubMed Central  Google Scholar 

  • Que Y, Sun S, Xu L, Zhang Y, Zhu H (2014) High-level coproduction, purification and characterisation of laccase and exopolysaccharides by Coriolus versicolor. Food Chem 159:208–213

    CAS  PubMed  Google Scholar 

  • Rahman MA, Abdullah N, Aminudin N (2015) Antioxidative effects and inhibition of human low density lipoprotein oxidation in vitro of polyphenolic compounds in Flammulina velutipes (Golden needle mushroom). Oxidative Med Cell Longev 2015:1–10

    Google Scholar 

  • Rahman MA, Abdullah N, Aminudin N (2018) Lentinula edodes (shiitake mushroom): an assessment of in vitro anti-atherosclerotic bio-functionality. Saudi J Biol Sci 25:1515–1523

    CAS  PubMed  Google Scholar 

  • Rajeshwari S, Kriushnapriya S Anticancer activities of phytochemicals from a wood rot Mushroom Phellinus adamantinus-in silico and in vitro approach. In: International conference on bioscience, biochemistry and bioinformatics, 2011. IPCBEE Singapore, pp 198–202

    Google Scholar 

  • Rashid S, Unyayar A, Mazmanci M, McKeown S, Banat I, Worthington J (2011) A study of anti-cancer effects of Funalia trogii in vitro and in vivo. Food Chem Toxicol 49:1477–1483

    CAS  PubMed  Google Scholar 

  • Reis FS, Barros L, Martins A, Ferreira IC (2012) Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol 50:191–197

    CAS  PubMed  Google Scholar 

  • Ren H, Wang H, Yuan F, Zhang J (2002) Clinical observation of Maitake capsules in the treatment of IGT. In: The Third International Conference of Diabetes., Beijing China

    Google Scholar 

  • Reyes RG, Lopez L, Kumakura K, Kalaw SP, Kikukawa T, Eguchi F (2009) Coprinus comatus, a newly domesticated wild nutriceutical mushroom in the Philippines. J Agric Technol 5:299–316

    Google Scholar 

  • Reza MA, Hossain MA, Damte D, Jo W-S, Hsu WH, Park S-C (2015) Hypolipidemic and hepatic steatosis preventing activities of the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes) ethanol extract in vivo and in vitro. Int J Med Mushrooms 17:723–734

    PubMed  Google Scholar 

  • Roupas P, Keogh J, Noakes M, Margetts C, Taylor P (2012) The role of edible mushrooms in health: evaluation of the evidence. J Funct Foods 4:687–709

    CAS  Google Scholar 

  • Roy D, Ansari S, Chatterjee A, Luganini A, Ghosh S, Chakraborty N (2020) In vitro search for antiviral activity against human cytomegalovirus from medicinal mushrooms Pleurotus sp. and Lentinus sp. J Antivir Antiretrovir 12:201

    Google Scholar 

  • Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. Edible Med Mushrooms Technol Appl:5–13

    Google Scholar 

  • RuiDian K, ShunFa L, Yi C, ChuRong J, QiaGuang S (2010) Analysis of chemical composition of polysaccharides from Poria cocos wolf and its anti-tumor activity by NMR spectroscopy. Carbohydr Polym 80:31–34

    Google Scholar 

  • Sadahiro S, Suzuki T, Maeda Y, Tanaka A, Kamijo A, Murayama C et al (2010) Effects of preoperative immunochemoradiotherapy and chemoradiotherapy on immune responses in patients with rectal adenocarcinoma. Anticancer Res 30:993–999

    CAS  PubMed  Google Scholar 

  • Sánchez C (2017) Bioactives from mushroom and their application. In: Puri M (ed) Food bioactives: extraction and biotechnology applications. Springer International Publishing, Cham, pp 23–57. https://doi.org/10.1007/978-3-319-51639-4_2

    Chapter  Google Scholar 

  • Santos AF, Da Silva M, Napoleão T, Paiva P, Correia MS, Coelho L (2014) Lectins: function, structure, biological properties and potential applications. Curr Topics Peptide Protein Res 15:1–22

    Google Scholar 

  • Sarma D, Saha AK, Datta BK (2018) Bioactive compounds with special references to anticancer property of oyster mushroom Pleurotus ostreatus. J Pharmacogn Phytochem 7:2694–2698

    CAS  Google Scholar 

  • Savoie J-M, Foulongne-Oriol M, Barroso G, Callac P (2013) 1 genetics and genomics of cultivated mushrooms, application to breeding of agarics. In: Kempken F (ed) Agricultural Applications. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 3–33. https://doi.org/10.1007/978-3-642-36821-9_1

    Chapter  Google Scholar 

  • Sekara A, Kalisz A, Grabowska A, Siwulski M (2015) Auricularia spp.-mushrooms as novel food and therapeutic agents-a review. Sydowia 67:1–10

    Google Scholar 

  • Selegean M, Putz MV, Rugea T (2009) Effect of the polysaccharide extract from the edible mushroom Pleurotus ostreatus against infectious bursal disease virus. Int J Mol Sci 10:3616–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y-l, Benzie IF, Buswell JA (2002) Role of tyrosinase in the genoprotective effect of the edible mushroom, Agaricus bisporus. Life Sci 70:1595–1608

    CAS  PubMed  Google Scholar 

  • Shi Z-T, Bao H-Y, Feng S (2017) Antitumor activity and structure-activity relationship of seven lanostane-type triterpenes from Fomitopsis pinicola and F. officinalis. China J Chin Materia Medica 42:915–922

    Google Scholar 

  • Shin CK, Yee CF, Shya LJ, Atong M (2007) Nutritional properties of some edible wild mushrooms in Sabah. J Appl Sci 7:2216–2221

    CAS  Google Scholar 

  • Shukla S, Bajpai VK, Kim M (2014) Plants as potential sources of natural immunomodulators. Rev Environ Sci Biotechnol 13:17–33

    CAS  Google Scholar 

  • Sifat N, Lovely F, Zihad SNK, Hossain MG, Shilpi JA, Grice ID et al (2020) Investigation of the nutritional value and antioxidant activities of common Bangladeshi edible mushrooms. Clin Phytosci 6:1–10

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh RS, Bhari R, Kaur HP (2010) Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 30:99–126

    CAS  PubMed  Google Scholar 

  • Sinha SK, Upadhyay TK, Sharma SK (2020) Investigations on immunomodulatory effect of white button mushroom medicinal properties against COVID-19. SGVU Int J Environ Sci Technol 6:32–51

    Google Scholar 

  • Siwulski M, Sobieralski K, Golak-Siwulska I, Sokół S, Sękara A (2015) Ganoderma lucidum (Curt.: Fr.) karst.–health-promoting properties. A review. Herba Polonica 61:105–118

    Google Scholar 

  • Smania EFA, Delle Monache F, Yunes RA, Paulert R, Smania Junior A (2007) Antimicrobial activity of methyl australate from Ganoderma australe. Rev Bras 17:14–16

    CAS  Google Scholar 

  • Smiderle F, Olsen L, Ruthes A, Czelusniak P, Santana-Filho A, Sassaki G et al (2012) Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydr Polym 87:368–376

    CAS  PubMed  Google Scholar 

  • Soares R, Meireles M, Rocha A, Pirraco A, Obiol D, Alonso E et al (2011) Maitake (D fraction) mushroom extract induces apoptosis in breast cancer cells by BAK-1 gene activation. J Med Food 14:563–572

    CAS  PubMed  Google Scholar 

  • Sonawane H, Bhosle S, Bapat G, Vikram G (2014) Pharmaceutical metabolites with potent bioactivity from mushrooms. J Pharm Res 8:969–972

    Google Scholar 

  • Sudheep NM, Sridhar KR (2014) Nutritional composition of two wild mushrooms consumed by the tribals of the Western Ghats of India. Mycology 5:64–72

    PubMed  Google Scholar 

  • Sumy AK, Jahan N, Sultana N (2010) Study on the hepatoprotective effect of oyster mushroom (Pleurotus Florida) against paracetamol induced liver damage in Wistar albino rats. J Bangladesh Soc Physiologist 5:46–52

    Google Scholar 

  • Sun Y-X, Liu J-C, Kennedy JF (2010) Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (APPs) from the fruiting bodies of Auricularia polytricha. Carbohydr Polym 82:299–304

    CAS  Google Scholar 

  • Tai T, Akita Y, Kinoshita K, Koyama K, Takahashi K, Watanabe K (1995) Anti-emetic principles of Poria cocos. Planta Med 61:527–530

    CAS  PubMed  Google Scholar 

  • Takama F, Minomiya S, Yoda R, Ishii H, Muraki S Parenchyma cells, chemical components of maitake mushroom (Grifola frondosa SF Gray) cultured artificially, and their changes by storage and boiling. In: Proceedings of the Eleventh International Scientific Congress on the Cultivation of Edible Fungi, Australia, 1981/edited by NG Nair, AD Clift, 1981. Sydney:[sn], 1981.,

    Google Scholar 

  • Tan W-C, Kuppusamy UR, Phan C-W, Tan Y-S, Raman J, Anuar AM et al (2015) Ganoderma neo-japonicum Imazeki revisited: domestication study and antioxidant properties of its basidiocarps and mycelia. Sci Rep 5:1–10

    CAS  Google Scholar 

  • Tang C, Hoo PC-X, Tan LT-H, Pusparajah P, Khan TM, Lee L-H et al (2016) Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol 7:474

    PubMed  PubMed Central  Google Scholar 

  • Thatoi H, Singdevsachan SK (2014) Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review. Afr J Biotechnol 13

    Google Scholar 

  • Thawthong A, Karunarathna SC, Thongklang N, Chukeatirote E, Kakumyan P, Chamyuang S et al (2014) Discovering and domesticating wild tropical cultivatable mushrooms. Chiang Mai J Sci 41:731–764

    CAS  Google Scholar 

  • Thongklang N, Keokanngeun L, Taliam W, Hyde K (2020) Cultivation of a wild strain of Auricularia Cornea from Thailand. Curr Res Environ Appl Mycol 10:120–130

    Google Scholar 

  • Tsujiyama S, Ueno H (2013) Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw. J Sci Food Agric 93:2841–2848

    CAS  PubMed  Google Scholar 

  • Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 93:863–869

    CAS  PubMed  Google Scholar 

  • Valdez-Morales M, Barry K, Fahey GC Jr, Domínguez J, de Mejia EG, Valverde ME et al (2010) Effect of maize genotype, developmental stage, and cooking process on the nutraceutical potential of huitlacoche (Ustilago maydis). Food Chem 119:689–697

    CAS  Google Scholar 

  • Valverde M, Paredes-López O (1993) Production and evaluation of some food properties of huitlacoche (Ustilago maydis). Food Biotechnol 7:207–219

    CAS  Google Scholar 

  • Valverde ME, Hernández-Pérez T, Paredes-Lopez O (2012) Huitlacoche–a 21st century culinary delight originated in the Aztec times. In: Hispanic foods: chemistry and bioactive compounds. ACS Publications, pp 83–100

    Google Scholar 

  • Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015

    Google Scholar 

  • Vanegas PE, Valverde ME, Paredes-Lopez O, Pataky JK (1995) Production of the edible fungus huitlacoche (Ustilago maydis): effect of maize genotype on chemical composition. J Ferment Bioeng 80:104–106

    CAS  Google Scholar 

  • Varghese R, Dalvi YB, Lamrood PY, Shinde BP, Nair C (2019) Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech 9:1–15

    Google Scholar 

  • Vaz JA, Ferreira IC, Tavares C, Almeida GM, Martins A, Vasconcelos MH (2012) Suillus collinitus methanolic extract increases p53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chem 135:596–602

    CAS  PubMed  Google Scholar 

  • Venturella G, Ferraro V, Cirlincione F, Gargano ML (2021) Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int J Mol Sci 22:1–30

    Google Scholar 

  • Wang H, Ng T (2000a) Flammulin: a novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem Cell Biol 78:699–702

    CAS  PubMed  Google Scholar 

  • Wang H, Ng T (2000b) Isolation of a novel ubiquitin-like protein from Pleurotus ostreatus mushroom with anti-human immunodeficiency virus, translation-inhibitory, and ribonuclease activities. Biochem Biophys Res Commun 276:587–593

    CAS  PubMed  Google Scholar 

  • Wang H, Ng T (2004) Isolation of a new ribonuclease from fruiting bodies of the silver plate mushroom Clitocybe maxima. Peptides 25:935–939

    CAS  PubMed  Google Scholar 

  • Wang H, Ng T (2006a) A laccase from the medicinal mushroom Ganoderma lucidum. Appl Microbiol Biotechnol 72:508–513

    CAS  PubMed  Google Scholar 

  • Wang H, Ng T (2006b) A ribonuclease from the wild mushroom boletus griseus. Appl Microbiol Biotechnol 72:912–916

    CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (1999) Isolation of a new ribonuclease from fresh fruiting bodies of the straw mushroom. Biochem Biophys Res Commun 264:714–718

    CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (2001) Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies. Life Sci 68:2151–2158

    CAS  PubMed  Google Scholar 

  • Wang X, Wang B, Zhou L, Wang X, Veeraraghavan VP, Mohan SK et al (2020) Ganoderma lucidum put forth anti-tumor activity against PC-3 prostate cancer cells via inhibition of Jak-1/STAT-3 activity. Saudi J Biol Sci 27:2632–2637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-C, Xi R-J, Li Y, Wang D-M, Yao Y-J (2012) The species identity of the widely cultivated Ganoderma,‘G. lucidum’(Ling-zhi), in China. PLoS One 7:e40857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-Z, Zhang J, Zhao Y-L, Li T, Shen T, Li J-Q et al (2013) Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia Cocos (Schwein.) Ryvarden et Gilb.: a review. J Ethnopharmacol 147:265–276

    CAS  PubMed  Google Scholar 

  • Wani BA, Bodha R, Wani A (2010) Nutritional and medicinal importance of mushrooms. J Med Plants Res 4:2598–2604

    Google Scholar 

  • Wasser SP (2005) Reishi or ling zhi (Ganoderma lucidum). Encycl Dietary Suppl 1:603–622

    Google Scholar 

  • Wasser SP (2017) Medicinal mushrooms in human clinical studies. Part I. anticancer, oncoimmunological, and immunomodulatory activities: a review. Int J Med Mushrooms 19

    Google Scholar 

  • Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, Moukha S et al (2012) Agaricus subrufescens: a review. Saudi J Biol Sci 19:131–146

    PubMed  PubMed Central  Google Scholar 

  • Wong JH, Ng TB, Wang H, Sze SCW, Zhang KY, Li Q et al (2011) Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18:387–392

    CAS  PubMed  Google Scholar 

  • Wu F, Yuan Y, Malysheva VF, Du P, Dai Y-C (2014) Species clarification of the most important and cultivated Auricularia mushroom “Heimuer”: evidence from morphological and molecular data. Phytotaxa 186:241–253

    Google Scholar 

  • Wu J-Y, Chen C-H, Chang W-H, Chung K-T, Liu Y-W, Lu F-J et al (2011) Anti-cancer effects of protein extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. Evid Based Complement Alternat Med 2011:1–10

    Google Scholar 

  • Wu J-Y, Siu K-C, Geng P (2021) Bioactive ingredients and medicinal values of Grifola frondosa (Maitake). Foods 10:1–28

    Google Scholar 

  • Xia B, Zhou Y, Tan HS, Ding LS, Xu HX (2014) Advanced ultra-performance liquid chromatography–photodiode array–quadrupole time-of-flight mass spectrometric methods for simultaneous screening and quantification of triterpenoids in Poria cocos. Food Chem 152:237–244

    CAS  PubMed  Google Scholar 

  • Xiao-Lei M, Meng M, Li-Rong H, Zheng L, Xiao-Hong C, Chun-Ling W (2015) Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa. Chin J Nat Med 13:906–914

    Google Scholar 

  • Xie J, Zhao J, Hu D-J, Duan J-A, Tang Y-P, Li S-P (2012) Comparison of polysaccharides from two species of Ganoderma. Molecules 17:740–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, volume 1: agricultural and medical perspective. Springer, Switzerland

    Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yamaguchi N, Yoshida J, Ren L, Chen H, Miyazawa Y, Fujii Y et al (1990) Augmentation of various immune reactivities of tumor-bearing hosts with an extract of Cordyceps sinensis. Biotherapy 2:199–205

    CAS  PubMed  Google Scholar 

  • Yang W, Pei F, Shi Y, Zhao L, Fang Y, Hu Q (2012) Purification, characterization and anti-proliferation activity of polysaccharides from Flammulina velutipes. Carbohydr Polym 88:474–480

    CAS  Google Scholar 

  • Yang W, Yu J, Zhao L, Ma N, Fang Y, Pei F et al (2015) Polysaccharides from Flammulina velutipes improve scopolamine-induced impairment of learning and memory of rats. J Funct Foods 18:411–422

    CAS  Google Scholar 

  • Yang Y, Zhang L, Chen Q, Lu W-L, Li N (2020) Antitumor effects of extract of the oak bracket medicinal mushroom, Phellinus baumii (Agaricomycetes), on human melanoma cells A375 in vitro and in vivo. Int J Med Mushrooms 22

    Google Scholar 

  • Yao F-J, Lu L-X, Wang P, Fang M, Zhang Y-M, Chen Y et al (2018) Development of a molecular marker for fruiting body pattern in Auricularia auricula-judae. Mycobiology 46:72–78

    PubMed  PubMed Central  Google Scholar 

  • Ye X, Ng T (2002) A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius. Biochem Biophys Res Commun 293:857–861

    CAS  PubMed  Google Scholar 

  • Yi C, Fu M, Cao X, Tong S, Zheng Q, Firempong CK et al (2013) Enhanced oral bioavailability and tissue distribution of a new potential anticancer agent, Flammulina velutipes sterols, through liposomal encapsulation. J Agric Food Chem 61:5961–5971

    CAS  PubMed  Google Scholar 

  • Yilmaz N, Solmaz M, Türkekul İ, Elmastaş M (2006) Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem 99:168–174

    CAS  Google Scholar 

  • Ying Z, Yan Z, Yan M, Jiangang Z, Hanmin L, Yuanxia S (2018) Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. International Journal of Biological Macromolecules 115:978–984

    Google Scholar 

  • Yu J, Sun R, Zhao Z, Wang Y (2014) Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells. Int J Biol Macromol 68:67–71

    CAS  PubMed  Google Scholar 

  • Yu L, Fernig DG, Smith JA, Milton JD, Rhodes JM (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 53:4627–4632

    CAS  PubMed  Google Scholar 

  • Yu Z-T, Liu B, Mukherjee P, Newburg DS (2013) Trametes versicolor extract modifies human fecal microbiota composition in vitro. Plant Foods Hum Nutr 68:107–112

    CAS  PubMed  Google Scholar 

  • Yue K, Ye M, Zhou Z, Sun W, Lin X (2013) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 65:474–493

    CAS  PubMed  Google Scholar 

  • Yuen JW, Gohel MDI (2005) Anticancer effects of Ganoderma lucidum: a review of scientific evidence. Nutr Cancer 53:11–17

    CAS  PubMed  Google Scholar 

  • Zeb M, Lee CH (2021) Medicinal properties and bioactive compounds from wild mushrooms native to North America. Molecules 26:251

    CAS  PubMed Central  Google Scholar 

  • Zeng P, Guo Z, Zeng X, Hao C, Zhang Y, Zhang M et al (2018) Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J Cell Mol Med 22:3278–3297

    PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Lian S, Li D, Lin X, Chen B, Wei H et al (2017) Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice. Biomed Pharmacother 95:1868–1875

    CAS  PubMed  Google Scholar 

  • Zhang L, Lu Y, Feng X, Liu Q, Li Y, Hao J et al (2020) Hepatoprotective effects of Pleurotus ostreatus protein hydrolysates yielded by pepsin hydrolysis. Catalysts 10:595

    CAS  Google Scholar 

  • Zhang Q-H, Lin Z-B (1999) The antitumor activity of Ganoderma lucidum (Curt.: Fr.) P. karst.(Ling Zhi)(Aphyllophoromycetideae) polysaccharides is related to tumor necrosis factor-α and interferon-γ. Int J Med Mushrooms 1

    Google Scholar 

  • Zhang X, Wang L, Ma F, Yang J, Su M (2017) Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). J Sci Food Agric 97:2919–2925

    CAS  PubMed  Google Scholar 

  • Zhang Y, Geng W, Shen Y, Wang Y, Dai Y-C (2014) Edible mushroom cultivation for food security and rural development in China: bio-innovation, technological dissemination and marketing. Sustainability 6:2961–2973

    Google Scholar 

  • Zhang Y, Jiang Y, Zhang M, Zhang L (2019) Ganoderma sinense polysaccharide: an adjunctive drug used for cancer treatment. Prog Mol Biol Transl Sci 163:165–177

    CAS  PubMed  Google Scholar 

  • Zhao F, Wang Y-F, Song L, Jin J-X, Zhang Y-Q, Gan H-Y et al (2017) Synergistic apoptotic effect of d-fraction from Grifola frondosa and vitamin C on hepatocellular carcinoma SMMC-7721 cells. Integr Cancer Ther 16:205–214

    CAS  PubMed  Google Scholar 

  • Zhao R, Yang W, Pei F, Zhao L, Hu Q (2018) In vitro fermentation of six kinds of edible mushrooms and its effects on fecal microbiota composition. Lwt 96:627–635

    CAS  Google Scholar 

  • Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y et al (2020) Immunomodulatory effects of edible and medicinal mushrooms and their bioactive Immunoregulatory products. J Fungi 6:269

    CAS  Google Scholar 

  • Zhao S, Rong C, Liu Y, Xu F, Wang S, Duan C et al (2015) Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydr Polym 122:39–45

    CAS  PubMed  Google Scholar 

  • Zhou L, Zhang Y, Gapter LA, Ling H, Agarwal R, K-y N (2008) Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem Pharm Bull 56:1459–1462

    CAS  Google Scholar 

  • Zhou Z, Han Z, Zeng Y, Zhang M, Cui Y, Xu L et al (2014) Chinese FDA approved fungal glycan-based drugs: an overview of structures, mechanisms and clinical related studies. J Transl Med 4:1–11

    Google Scholar 

  • Zhu L, Xu J, Zhang S, Wang R, Huang Q, Chen H et al (2018) Qualitatively and quantitatively comparing secondary metabolites in three medicinal parts derived from Poria cocos (Schw.) wolf using UHPLC-QTOF-MS/MS-based chemical profiling. J Pharm Biomed Anal 150:278–286

    CAS  PubMed  Google Scholar 

  • Zhu M-J, Du F, Zhang G-Q, Wang H-X, Ng T-B (2013) Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int Biodeterior Biodegrad 82:33–39

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology, Dr. KSG Akal College of Agriculture, Eternal University, Baru Sahib and Department of Environment, Science & Technology (DEST), Shimla Himachal Pradesh, India for funding the project “Development of Microbial Consortium as Bio-inoculants for Drought and Low Temperature Growing Crops for Organic Farming in Himachal Pradesh” as well as for providing the facilities and financial support, to undertake the investigations. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kour, H. et al. (2021). Bioprospecting of Industrially Important Mushrooms. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-85603-8_20

Download citation

Publish with us

Policies and ethics