Skip to main content

Sustainable Supply Chain of Aviation Fuel Based on Analytical Hierarchy Process (AHP) Under Uncertainty of q-ROFSs

  • Conference paper
  • First Online:
Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation (INFUS 2021)

Abstract

Nowadays, sustainable supply chain (SSC) selection of aviation fuels is one of the hot topics around world aviation industries. Existing of diverse intuitive and interrelated criteria that should be considered during the decision-making process turned it into one of the complex decision-making problems. Also, there exists tremendous uncertainty around all parameters and alternatives in the problem. The q-Rung Orthopair Fuzzy Sets (q-ROFSs), which is a generalization of Intuitionistic Fuzzy Sets (IFSs), provide a more proper space for decision-makers. q-ROFSs capable of expressing uncertain information with more flexibility. In this article it is tried to show the reliability of applying the analytical hierarchy process (AHP) in q-ROFSs environment for SSC of aviation fuel. First, properties of q-ROFSs are evaluated then the AHP method is discussed in detail based on q-ROFSs. Afterward, by considering the hardness of the SSC in aviation fuel problem, it is proposed a MAGDM method based on AHP in q-ROFSs environment. Finally, an application of AHP based on q-ROFSs to solve the SSC of the aviation fuel problem is presented to test the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  3. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)

    MATH  Google Scholar 

  4. Yager, R.R.: Pythagorean fuzzy subsets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, vol. 2, pp. 57–61 (2013)

    Google Scholar 

  5. Cuong, B.C., Kreinovich, V.: Picture fuzzy sets - a new concept for computational intelligence problems. In: 2013 3rd World Congress on Information and Communication Technologies, WICT 2013 (2014)

    Google Scholar 

  6. Yager, R.R.: Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 25, 1222–1230 (2017)

    Article  Google Scholar 

  7. Donyatalab, Y., Farrokhizadeh, E., Seyfi Shishavan, S.A.: Similarity measures of q-rung orthopair fuzzy sets based on square root cosine similarity function. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 475–483. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_55

    Chapter  Google Scholar 

  8. Farrokhizadeh, E., Shishavan, S.A.S., Donyatalab, Y., Abdollahzadeh, S.: The dice (sorensen) similarity measures for optimal selection with q-rung orthopair fuzzy information. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 484–493. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_56

    Chapter  Google Scholar 

  9. Donyatalab, Y., Farrokhizadeh, E., Shishavan, S.A.S., Seifi, S.H.: Hamacher aggregation operators based on interval-valued q-rung orthopair fuzzy sets and their applications to decision making problems. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 466–474. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_54

    Chapter  Google Scholar 

  10. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Prior Setting, Resource Allocation. MacGraw-Hill, New York (1980)

    MATH  Google Scholar 

  11. Kutlu Gündoğdu, F., Kahraman, C.: Spherical fuzzy analytic hierarchy process (AHP) and its application to industrial robot selection. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2019. AISC, vol. 1029, pp. 988–996. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23756-1_117

    Chapter  Google Scholar 

  12. van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11(1–3), 229–241 (1983). https://doi.org/10.1016/S0165-0114(83)80082-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17(3), 233–247 (1985). https://doi.org/10.1016/0165-0114(85)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Zeng, J., An, M., Smith, N.J.: Application of a fuzzy based decision making methodology to construction project risk assessment. Int. J. Proj. Manag. 25, 589–600 (2007)

    Article  Google Scholar 

  15. Kahraman, C., Kaya, I.: A fuzzy multicriteria methodology for selection among energy alternatives. Expert Syst. Appl. 37, 6270–6281 (2010)

    Article  Google Scholar 

  16. Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95(3), 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  MATH  Google Scholar 

  17. Tan, R.R., Aviso, K.B., Huelgas, A.P., Promentilla, M.A.B.: Fuzzy AHP approach to selection problems in process engineering involving quantitative and qualitative aspects. Process Saf. Environ. Prot. (2014).

    Google Scholar 

  18. Kahraman, C., Öztayşi, B., Sarı, İU., Turanoğlu, E.: Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl. Based Syst. 59, 48–57 (2014). https://doi.org/10.1016/j.knosys.2014.02.001

    Article  Google Scholar 

  19. Oztaysi, B., Onar, S.C., Kahraman, C.: Prioritization of business analytics projects using interval type-2 fuzzy AHP. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 643, pp. 106–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66827-7_10

    Chapter  Google Scholar 

  20. Jian, W., Huang, H.-B., Cao, Q.-W.: Research on AHP with interval-valued intuitionistic fuzzy sets and its application in multi-criteria decision making problems. Appl. Math. Model. 37(24), 9898–9906 (2013). https://doi.org/10.1016/j.apm.2013.05.035

    Article  MathSciNet  MATH  Google Scholar 

  21. Oztaysi, B., Onar, S.C., Bolturk, E., Kahraman, C.: Hesitant fuzzy analytic hierarchy process. In: IEEE International Conference on Fuzzy Systems (2015)

    Google Scholar 

  22. Kahraman, C.: Multiattribute warehouse location selection in humanitarian logistics using hesitant fuzzy. AHP. Int. J. Anal. Hierarchy Process. 8, 271–298 (2016)

    Google Scholar 

  23. Abdel-Basset, M., Mohamed, M., Sangaiah, A.K.: Neutrosophic AHP-Delphi Group decision making model based on trapezoidal neutrosophic numbers. J. Ambient Intell. Humaniz. Comput. 9, 1427–1443 (2018)

    Article  Google Scholar 

  24. Bolturk, E., Kahraman, C.: A novel interval-valued neutrosophic AHP with cosine similarity measure. Soft. Comput. 22(15), 4941–4958 (2018). https://doi.org/10.1007/s00500-018-3140-y

    Article  Google Scholar 

  25. Seyfi Shishavan, S.A., Donyatalab, Y., Farrokhizadeh, E.: Extension of classical analytic hierarchy process using q-rung orthopair fuzzy sets and its application to disaster logistics location center selection. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 432–439. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_50

    Chapter  Google Scholar 

  26. Nygren, E., Aleklett, K., Höök, M.: Aviation fuel and future oil production scenarios. Energy Policy 37(10), 4003–4010 (2009). https://doi.org/10.1016/j.enpol.2009.04.048

    Article  Google Scholar 

  27. Energy Information Administration, U.S.E.I.: International Energy Outlook 2019 (2019)

    Google Scholar 

  28. Liu, P., Wang, P.: Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 33, 259–280 (2018)

    Article  Google Scholar 

  29. Kutlu Gündoğdu, F., Kahraman, C.: A novel spherical fuzzy QFD method and its application to the linear delta robot technology development. Eng. Appl. Artif. Intell. 87, 103348 (2020)

    Article  Google Scholar 

  30. Otay, I., Kahraman, C., Öztayşi, B., Onar, S.Ç.: Score and accuracy functions for different types of spherical fuzzy sets (2020)

    Google Scholar 

  31. Ashraf, S., Abdullah, S.: Spherical aggregation operators and their application in multiattribute group decision-making. Int. J. Intell. Syst. 34, 493–523 (2019)

    Article  Google Scholar 

  32. Annual Energy Outlook (2020). https://www.eia.gov/outlooks/aeo/

  33. U.S. Energy Information Agency: Annual Energy Outlook 2019 with projections to 2050. Annu. Energy Outlook 2019 with Proj. to 2050. (2019)

    Google Scholar 

  34. Airport Suppliers (Aviation Fuel Suppliers). https://www.airport-suppliers.com/suppliers/fuel-handling/

  35. Aviation Fuel Market by Product and Geography - Forecast and Analysis 2020–2024 (Technavio). https://www.technavio.com/report/aviation-fuel-market-industry-analysis

  36. Elkington, J.: Cannibals with Forks: The Triple Bottom Line of 21st Century Business (1999). Choice Rev. Online

    Google Scholar 

  37. Rodger, J.A., George, J.A.: Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications technology. J. Cleaner Prod. 142, 1931–1949 (2017). https://doi.org/10.1016/j.jclepro.2016.11.089

    Article  Google Scholar 

  38. Ren, J., Fedele, A., Mason, M., Manzardo, A., Scipioni, A.: Fuzzy multi-actor multi-criteria decision making for sustainability assessment of biomass-based technologies for hydrogen production. Int. J. Hydrogen Energy 38, 9111–9120 (2013)

    Article  Google Scholar 

  39. Ren, J., Manzardo, A., Mazzi, A., Zuliani, F., Scipioni, A.: Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess. 20, 842–853 (2015)

    Article  Google Scholar 

  40. Afgan, N.H., Carvalho, M.G.: Sustainability assessment of hydrogen energy systems. Int. J. Hydrogen Energy 29, 1327–1342 (2004)

    Article  Google Scholar 

  41. Ren, J., Xu, D., Cao, H., Wei, S., Dong, L., Goodsite, M.E.: Sustainability decision support framework for industrial system prioritization. AIChE J. 62, 108–130 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farid, F., Donyatalab, Y. (2022). Sustainable Supply Chain of Aviation Fuel Based on Analytical Hierarchy Process (AHP) Under Uncertainty of q-ROFSs. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds) Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Lecture Notes in Networks and Systems, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-030-85577-2_68

Download citation

Publish with us

Policies and ethics