Skip to main content

Application of Surface-Modified Electrode Materials in Wastewater Treatment

  • Chapter
  • First Online:
Modified Nanomaterials for Environmental Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 390 Accesses

Abstract

Photo-active metal oxides (PMOs) have outstanding physical and chemical properties which are ideal to disintegrate wastewater pollutants. Titanium oxide (TiO2) initially found popularity in wastewater treatment. TiO2 utilization on wastewater degradation was attributed particularly to its wider bandgap. Nonetheless, TiO2 retains antibacterial activity during the application and that renders it to rapid recombination of photogenerated electron–hole pairs. In a subsequent search of alternative PMO, zinc oxide (ZnO) was obtained, and it was found to have a wider bandgap equivalent to that of TiO2. However, ZnO suffers from photo-corrosion and poor response to visible light. This rigorously proved that an application of a single PMO leads to both inefficiency and ineffectiveness in wastewater treatment. This phenomenon necessitates the hybridization of photocatalysts and improvement of their surface properties.

The present chapter details organic pollutants which are found in wastewater and the methods which are used to remove them from the wastewater. Further discussions are made intensively on photocatalysis and advance oxidation methods. Furthermore, photocatalysts and their advancements are clearly stated and elaborated. Finally, surface-modified photoanodes and their applications using the photoelectrochemical technique have been thoroughly explained. From overall analyses, several deductions have been documented:

  • POMs on their singular existence are packed with pros and cons, and that makes wastewater treatment dynamic.

  • AOMs, particularly the photoelectrochemical technique, are worthwhile for the degradation of wastewater pollutants.

  • Factors that affect degradation processes on wastewater pollutants include light captivation properties, reduction and oxidation rates on the surface by the photogenerated electrons and holes and a recombination rate of such charges.

  • Surface modification of photoanodes is carried through nanostructured materials, the addition of metals particularly noble ones such as gold (Au), silver (Ag), platinum (Pt), and through the use of novel titanium alloys and cubic double-perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, Visible light-induced degradation of methyl orange using β-Ag0. 333V2O5 nanorod catalysts by facile thermal decomposition method. J. Saudi Chem. Soc. 19(5), 521–527 (2015)

    Google Scholar 

  2. P. Li, G. Zhao, K. Zhao, J. Gao, T. Wu, An efficient and energy-saving approach to photocatalytic degradation of opaque high-chroma methylene blue wastewater by electrocatalytic pre-oxidation. Dyes Pigm. 92(3), 923–928 (2012)

    Article  CAS  Google Scholar 

  3. M.A. Mahadik, G.W. An, S. David, S.H. Choi, M. Cho, J.S. Jang, Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl. Surf. Sci. 426, 833–843 (2017)

    Article  CAS  Google Scholar 

  4. X. Yuan, J. Yi, H. Wang, H. Yu, S. Zhang, F. Peng, New route of fabricating BiOI and Bi2O3 supported TiO2 nanotube arrays via the electrodeposition of bismuth nanoparticles for photocatalytic degradation of acid orange II. Mater. Chem. Phys. 196, 237–244 (2017)

    Google Scholar 

  5. Y.M. Hunge, M.A. Mahadik, S.S. Kumbhar, V.S. Mohite, K.Y. Rajpure, N.G. Deshpande et al., Visible light catalysis of methyl orange using nanostructured WO3 thin films. Ceram.442 Int. 42(1), 789–798 (2016)

    Google Scholar 

  6. O.M. Ama, K. Khoele, D.J. Delport, S.S. Ray, P.O. Osifo, Synthesis and fabrication of photoactive nanocomposites electrodes for the degradation of wastewater pollutants. Nanostruct. Metal-oxide Electrode Mater. Water Purif. Eng. Mater.

    Google Scholar 

  7. L.M. Reid, T. Li, Y. Cao & C.P. Berlinguette, Organic chemistry at anodes and photoanodes, NOPAGES & V (2018)

    Google Scholar 

  8. D. Rawat, V. Mishra, R.S. Sharma, Detoxification of Azo dyes in the context of environmental processes. Chemosphere 155, 591–605 (2016)

    Article  CAS  Google Scholar 

  9. X.L. He, C. Song, Y.Y. Li, N. Wang, L. Xu, X. Han, D.S. Wei, Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicol. Environ. Saf. 150, 232–239 (2018)

    Article  CAS  Google Scholar 

  10. V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ. Sci. Technol. 44(19), 7200–7205 (2010)

    Google Scholar 

  11. C. Yu, Y. Shu, X. Zhou, Y. Ren, Z. Liu, Multi-branched Cu2O nanowires for photocatalytic degradation of methyl orange. Mater. Res. Exp. 5(3), 035046 (2018)

    Google Scholar 

  12. Q. Zheng, C. Lee, Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochim. Acta 115, 140–145 (2014)

    Article  CAS  Google Scholar 

  13. N. Chaukura, W. Gwenzi, N. Tavengwa, M.M. Manyuchi, Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. Environ. Dev. 19, 84–89 (2016)

    Article  Google Scholar 

  14. S. Garcia-Segura, S. Dosta, J.M. Guilemany, E. Brillas, Solar photoelectrocatalytic degradation of acid orange 7 Azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl. Catal. B 132, 142–150 (2013)

    Article  Google Scholar 

  15. N. Lezana, F. Fernández-Vidal, C. Berríos, E. Garrido-Ramírez, Electrochemical and photo-504 electrochemical processes of methylene blue oxidation by Ti/TiO2 electrodes modified with 505 Fe-allophane. J. Chil. Chem. Soc. 62(2), 3529–3534 (2017)

    Google Scholar 

  16. H. Wu, Z. Zang, Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotubearrays. J. Solid State Chem. 184(12), 3202–3207 (2011)

    Google Scholar 

  17. R.M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-granados, M.J. Munoz-Portero, J. García-Antón, Elimination of pesticide atrazine by photoelectrocatalysis using a photoanode based on WO3 nanosheets Chem. Eng. J. 350, 1114–1124 (2018)

    Google Scholar 

  18. X. Meng, Z. Zang, X. Li, Synergetic photoelectrocatalytic reactors for environmental remediation: a review. J. Photochem. Photobiol. C 24, 83–101 (2015)

    Google Scholar 

  19. S. Garcia-Segura, S. Dosta, J.M. Guilemany, E. Brillas, Solar photoelectrocatalytic degra-397 dation of acid orange 7 Azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl. Catal. B 132, 142–150 (2013)

    Article  Google Scholar 

  20. Y. Huang, H. Cai, D. Feng, D. Gu, Y. Deng, B. Tu et al., One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem.478 Commun. 23, 2641–2643 (2008)

    Google Scholar 

  21. A. Ray. Electrodeposition of thin films for low-cost solar cells, in Electroplating of Nanostructures (IntechOpen, 2015)

    Google Scholar 

  22. O.J. Ilegbusi, S.N. Khatami, L.I. Trakhtenberg, Spray pyrolysis deposition of single and mixed oxide thin films. Mater. Sci. Appl. 8(02), 153 (2017)

    CAS  Google Scholar 

  23. N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Water annealing and other low-temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye-sensitized solar cells and for water splitting. Electrochim. Acta 82, 98–102 (2012)

    Article  CAS  Google Scholar 

  24. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012)

    Google Scholar 

  25. S. Li, J. Qiu, M. Ling, F. Peng, B. Wood, S. Zhang, Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater.490 Interfaces. 5(21), 11129–11135 (2013)

    Google Scholar 

  26. J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X.S. Zhao, Porous photocatalysts for advanced water purifications. J. Mater. Chem. 20(22), 4512–4528 (2010)

    Article  CAS  Google Scholar 

  27. C. Fu, M. Li, H. Li, C. Li, X. Guo Wu, B. Yang, Fabrication of Au nanoparticle/TiO2 hybrid494 filmsfor photo electrocatalytic degradation of methyl orange. J. Alloy. Compd. 692, 727–733 (2017)

    Google Scholar 

  28. C. Fu, M. Li, H. Li, C. Li, X. Guo Wu, B. Yang, Fabrication of Au nanoparticle/TiO2 hybrid filmsfor photo electrocatalytic degradation of methyl orange. J. Alloy. Compd. 692, 727–733468 (2017)

    Google Scholar 

  29. G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, Facile synthesis of ZnO flowers modified graphene-like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloy. Compd. 682, 208–215 (2016)

    Article  CAS  Google Scholar 

  30. Y. Li, C. Ji, Y.C. Chi, Z.H. Dan, H.F. Zhang, F.X. Qin, Fabrication and photocatalytic activity of Cu2O nanobelts on nanoporous Cu substrate. Acta Metallurgica Sinica (English Letters) 341 32(1), 63–73 (2019)

    Google Scholar 

  31. H.H. Cheng, S.S. Chen, S.Y. Yang, H.M. Liu, K.S. Lin, Sol-gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N co-doped TiO2 catalysts. Materials 11(6), 939 (2018)

    Article  CAS  Google Scholar 

  32. T. Wright, State reviewing controversial wastewater treatment technique. Environment (2019)

    Google Scholar 

  33. M. Vaara, New approaches in peptide antibiotics. Curr. Opin. Pharmacol. 9(5), 571–576 (2009)

    Article  CAS  Google Scholar 

  34. L.T. Nguyen, E.F. Haney, H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29(9), 464–472 (2011)

    Article  CAS  Google Scholar 

  35. V. Vega-Sánchez, F. Latif-Eugenín, E. Soriano-Vargas, R. Beaz-Hidalgo, M.J. Figueras, M.G. Aguilera-Arreola, G. Castro-Escarpulli, Re-identification of Aeromonas isolates from rainbow trout and incidence of class1 integronand β-lactamase genes. Vet. Microbiol. 172(3–4), 528–533 (2014)

    Google Scholar 

  36. M. Mahboubi, G. Haghi, Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 119(2), 325–327 (2008)

    Google Scholar 

  37. R. Gothwal, T. Shashidhar, Antibiotic pollution in the environment: a review. Clean–Soil, Air, 386 Water 43(4), 479–489 (2015)

    Google Scholar 

  38. H, Wu, Z. Zang, Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J. Solid State Chem. 184(12), 3202–3207 (2011)

    Google Scholar 

  39. G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloy. Compd. 682, 208–215 (2016)

    Article  CAS  Google Scholar 

  40. D. Liu, J. Zhou, J. Wang, R. Tian, X. Li, E. Nie et al., Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode. 498 Chem. Eng. J. 344, 332–341 (2018)

    Google Scholar 

  41. D. Liu, R. Tian, J. Wang, E. Nie, X. Piao, X. Li, Z. Sun, Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185, 574–581 (2017)

    Article  CAS  Google Scholar 

  42. D. Cao, Y. Wang, X. Zhao, Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Current Opin. Green Sustain. Chem. 6, 78–84 (2017)

    Article  Google Scholar 

  43. J. Tao, Z. Gong, G. Yao, Y. Cheng, M. Zhang, J. Lv et al., Enhanced photocatalytic and photoelectrochemical properties of TiO2 nanorod arrays sensitized with CdS nanoplates. Ceram. Int. 42(10), 11716–11723 (2016)

    Article  CAS  Google Scholar 

  44. X.D. Li, T.P. Chen, P. Liu, Y. Liu, K.C. Leong, Effects of free electrons and quantum confinement in ultrathin ZnO films: a comparison between undoped and Al-doped ZnO. Opt. Express330 21(12), 14131–14138 (2013)

    Google Scholar 

  45. G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, J. Phys. Chem. C 112, 19040–19044 (2003)

    Article  Google Scholar 

  46. D. Cao, Y. Wang, X. Zhao, Combination of photocatalytic and electrochemical degradation536 of organic pollutants from water. Curr. Opin. Green Sustain. Chem. 6, 78–84 (2017)

    Article  Google Scholar 

  47. M.E. Osugi, G.A. Umbuzeiro, M.A. Anderson, M.V.B. Zanoni, Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochim. Acta 50(25–26), 5261–5269 (2005)

    Article  CAS  Google Scholar 

  48. O.M. Ama, N. Kumar, F.V. Adams, S.S. Ray, Efficient and cost-effective photoelectrochemical degradation of dyes in wastewater over an exfoliated graphite-MoO3 nanocomposite electrode. Electrocatalysis (2018)

    Google Scholar 

  49. O.M Ama, O.A Arotiba , Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiationJ. Electroanalytical Chemistry, 157-164 (2017)

    Article  Google Scholar 

  50. D. Pletcher, R.A. Green, R.C. Brown, Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev. 118(9), 4573–4591 (2017)

    Article  Google Scholar 

  51. A. Goshadrou, A. Moheb, Continuous fixed bed adsorption of C.I. Acid blue by exfoliated graphite: an experimental and modeling study. Desalination 269, 170–176 (2011)

    Google Scholar 

  52. G.W. An, M.A. Mahadik, W.S. Chae, H.G. Kim, M. Cho, J.S. Jang, Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: Effects of the light trapping and optimum charge transfer. Appl. Surf. Sci. 440, 688–699 (2018)

    Article  CAS  Google Scholar 

  53. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004)

    Article  CAS  Google Scholar 

  54. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–a review. Chemosphere 174, 665–688 (2017)

    Article  CAS  Google Scholar 

  55. M.J. Ahmed, B.H. Hameed, Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: a review. Ecotoxicol. Environ. Saf. 149, 257–266 (2018)

    Article  CAS  Google Scholar 

  56. T. Krishnakumar, N. Pinna, K.P. Kumara, K. Perumal, R. Jayaprakash, Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett. 62, 3437–3440 (2008)

    Article  CAS  Google Scholar 

  57. W. Baran, A. Makowski, W. Wardas, The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence of TiO2. Dyes Pigm. 76, 226–230 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ama, O.M., Khoele, K., Govender, P.P., Ray, S.S. (2022). Application of Surface-Modified Electrode Materials in Wastewater Treatment. In: Ama, O.M., Sinha Ray, S., Ogbemudia Osifo, P. (eds) Modified Nanomaterials for Environmental Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-85555-0_6

Download citation

Publish with us

Policies and ethics