Skip to main content

Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale from Radiographs Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Deep Learning, Artificial Intelligence and Robotics

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 249))

Abstract

The severity of knee osteoarthritis is graded using the 5-point Kellgren-Lawrence scale where healthy knees are assigned grade 0, and the subsequent grades 1–4 represent increasing severity of the affliction. Although several methods have been proposed in recent years to develop models that can automatically predict the Kellgren-Lawrence grade from a given radiograph, most models have been developed and evaluated on datasets not sourced from India. These models fail to perform well on the radiographs of Indian patients. In this paper, we propose a novel method using convolutional neural networks to automatically grade knee radiographs on the Kellgren-Lawrence scale. Our method works in two connected stages: in the first stage, an object detection model segments individual knees from the rest of the image; in the second stage, a regression model automatically grades each knee separately on the Kellgren-Lawrence scale. We train our model using the publicly available Osteoarthritis Initiative dataset and demonstrate that fine-tuning the model before evaluating it on a dataset from a private hospital significantly lowers the corresponding mean absolute error. Additionally, we compare classification and regression models built for the same task and demonstrate that regression outperforms classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kellgren, J., Lawrence, J.: Radiological assessment of osteo-arthrosis. Ann. Rheumatic Diseases 16(4), 494 (1957)

    Article  Google Scholar 

  2. Ji, X., Zhang, H.: Current strategies for the treatment of early stage osteoarthritis. Frontiers Mech. Eng. 5, 57 (2019)

    Article  Google Scholar 

  3. Kohn, M.D., Sassoon, A.A., Fernando, N.D.: Classifications in brief: Kellgren-Lawrence classification of osteoarthritis (2016)

    Google Scholar 

  4. Gossec, L., Jordan, J., Mazzuca, S., Lam, M.-A., Suarez-Almazor, M., Renner, J., Lopez-Olivo, M., Hawker, G., Dougados, M., Maillefert, J., et al.: Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 x-rays: report of the oarsi-omeract task force. Osteoarthritis Cartilage 16(7), 742–748 (2008)

    Article  Google Scholar 

  5. Sheehy, L., Culham, E., McLean, L., Niu, J., Lynch, J., Segal, N.A., Singh, J.A., Nevitt, M., Cooke, T.D.V.: Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the multicenter osteoarthritis study (most). Osteoarthritis Cartilage 23(9), 1491–1498 (2015)

    Article  Google Scholar 

  6. Culvenor, A.G., Engen, C.N., Øiestad, B.E., Engebretsen, L., Risberg, M.A.: Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and oarsi atlas criteria. Knee Surg. Sports Traumatol. Arthrosc. 23(12), 3532–3539 (2015)

    Article  Google Scholar 

  7. Antony, J., McGuinness, K., O’Connor, N.E., Moran, K.: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1195–1200. IEEE (2016)

    Google Scholar 

  8. Antony, J., McGuinness, K., Moran, K., O’Connor, N.E.: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 376–390. Springer (2017)

    Google Scholar 

  9. Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  10. Tiulpin, A., Thevenot, J., Rahtu, E., Saarakkala, S.: A novel method for automatic localization of joint area on knee plain radiographs. In: Scandinavian Conference on Image Analysis, pp. 290–301. Springer (2017)

    Google Scholar 

  11. Alzubi, J., Nayyar, A., Kumar, A.: Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser. 1142, 012012 (2018)

    Google Scholar 

  12. Kotti, M., Duffell, L.D., Faisal, A.A., McGregor, A.H.: Detecting knee osteoarthritis and its discriminating parameters using random forests. Med. Eng. Phys. 43, 19–29 (2017)

    Article  Google Scholar 

  13. Bandyopadhyay, S.K., Sharma, P.: Detection of osteoarthritis using knee x-ray image analyses: a machine vision based approach (2016)

    Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  15. Brahim, A., Jennane, R., Riad, R., Janvier, T., Khedher, L., Toumi, H., Lespessailles, E.: A decision support tool for early detection of knee osteoarthritis using x-ray imaging and machine learning: data from the osteoarthritis initiative. Computerized Med. Imaging Graph. 73, 11–18 (2019)

    Article  Google Scholar 

  16. Anderson, J.R., Matessa, M.: Explorations of an incremental, Bayesian algorithm for categorization. Mach. Learn. 9(4), 275–308 (1992)

    Google Scholar 

  17. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: Wnd-charm: multi-purpose image classification using compound image transforms. Pattern Recogn. Lett. 29(11), 1684–1693 (2008)

    Article  Google Scholar 

  18. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.G.: Source code for biology and medicine. Source Code Biol. Med. 3, 13 (2008)

    Article  Google Scholar 

  19. Shamir, L., Ling, S.M., Scott, W., Hochberg, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis Cartilage 17(10), 1307–1312 (2009)

    Article  Google Scholar 

  20. Lee, H.: Unsupervised feature learning via sparse hierarchical representations, vol. 20. Stanford University (2010)

    Google Scholar 

  21. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision, pp. 319–345. Springer (1999)

    Google Scholar 

  22. Sultana, F., Sufian, A., Dutta, P.: Advancements in image classification using convolutional neural network. In: 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 122–129. IEEE (2018)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  24. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: Delving deep into convolutional nets. arXiv:1405.3531, 2014

  25. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678, 2014

    Google Scholar 

  26. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  27. Dutta, A., Zisserman, A.: The VGG image annotator (via). arXiv:1904.10699, 2019

  28. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969, 2017

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99, 2015

    Google Scholar 

  30. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708, 2017

    Google Scholar 

  31. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: International Conference on Artificial Neural Networks, pp. 270–279. Springer, 2018

    Google Scholar 

  32. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  33. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  34. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. arXiv:1602.04433, 2016

  36. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176, 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeep Kondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kondal, S., Kulkarni, V., Gaikwad, A., Kharat, A., Pant, A. (2022). Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale from Radiographs Using Convolutional Neural Networks. In: Troiano, L., et al. Advances in Deep Learning, Artificial Intelligence and Robotics. Lecture Notes in Networks and Systems, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-030-85365-5_16

Download citation

Publish with us

Policies and ethics