Skip to main content

Corneal Biomechanics in Keratoconus Diagnosis

  • Chapter
  • First Online:
Keratoconus

Abstract

One of the greatest challenges in ophthalmology at the beginning of the twenty-first century is the detection of keratoconus in its early stages, when biomicroscopy and surface topography are still unchanged. The recognition of high susceptibility ectatic process corneas is also focus of several research. In this chapter, we will comment on the possibilities of corneal biomechanics in these matters. Two devices are commercially available to study a corneal biomechanics: Ocular Response Analyzer (ORA) and Corneal Visualization Scheimpflug Technology (CorVis ST). The isolate results and in combination with other technologies are also debated. At the end, a clinical example is presented in order to illustrate this biomechanical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28(4):293–322.

    Article  CAS  PubMed  Google Scholar 

  2. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24(7):1007–9.

    Article  CAS  PubMed  Google Scholar 

  3. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi A, Staberg L, Schlegel W. Viscoelastic properties of human cornea. Exp Mech. 1973;13(12):497–503.

    Google Scholar 

  5. Luce DA. Determining in vivo biomechanical properties of the cornea with an Ocular Response Analyzer. J Cataract Refract Surg. 2005;31(1):156–62.

    Google Scholar 

  6. Kotecha A, Elsheikh A, Roberts CR, et al. Corneal thickness- and age-related biomechanical properties of the cornea measured with the Ocular Response Analyzer. Invest Ophthalmol Vis Sci. 2006;47(12):5337–47.

    Google Scholar 

  7. Shah S, Laiquzzaman M, Bhojwani R, et al. Assessment of the biomechanical properties of the cornea with the Ocular Response Analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026–31.

    Google Scholar 

  8. Shah S, Laiquzzaman M. Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser. Contact Lens Anterior Eye. 2009;32(3):129–32.

    Article  PubMed  Google Scholar 

  9. Fontes BM, Ambrósio R, Jardim D, et al. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117(4):673–9.

    Article  PubMed  Google Scholar 

  10. Fontes BM, Ambrósio R Jr, Alonso RS, et al. Corneal biomechanical metrics in eyes with refraction of –19.00 to 9.00 D in healthy Brazilian patients. J Refract Surg. 2008;24(9):941–5.

    Google Scholar 

  11. Elsheikh A, Wang D, Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg. 2007;23(8):808–18.

    Google Scholar 

  12. Elsheikh A, Geraghty B, Rama P, et al. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010:rsif20100108.

    Google Scholar 

  13. Spoerl E, Terai N, Scholz F, et al. Detection of biomechanical changes after corneal cross-linking using Ocular Response Analyzer software. J Refract Surg. 2011(27):452–7.

    Google Scholar 

  14. Goldich Y, Barkana Y, Morad Y, et al. Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?—A pilot study. Cornea. 2009;28(5):498–502.

    Google Scholar 

  15. Lopes B, Ramos ICdO, Ribeiro G, et al. Bioestatísticas: conceitos fundamentais e aplicações práticas. Rev Bras Oftalmol. 2014;73:16–22.

    Google Scholar 

  16. Ambrosio R Jr, Nogueira LP, Caldas DL, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51(2):11–38. https://doi.org/10.1097/IIO.0b013e31820f1d2d. 00004397-201105120-00002 [pii] [published Online First: 2011/03/09].

    Article  PubMed  Google Scholar 

  17. Fontes BM, Ambrosio Junior R, Jardim D, et al. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq Bras Oftalmol. 2010;73(4):333–7. https://doi.org/10.1590/S0004-27492010000400006. [pii] [published Online First: 2010/10/15].

    Article  PubMed  Google Scholar 

  18. Fontes BM, Ambrosio R Jr, Jardim D, et al. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117(4):673–9. https://doi.org/10.1016/j.ophtha.2009.09.023; S0161-6420(09)01070-7 [pii] [published Online First: 2010/02/09].

    Article  PubMed  Google Scholar 

  19. Fontes BM, Ambrosio R Jr, Velarde GC, et al. Corneal biomechanical evaluation in healthy thin corneas compared with matched keratoconus cases. Arq Bras Oftalmol. 2011;74(1):13–6. https://doi.org/10.1590/S0004-27492011000100003. [pii] [published Online First: 2011/06/15].

    Article  PubMed  Google Scholar 

  20. Fontes BM, Ambrosio R Jr, Velarde GC, et al. Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. J Refract Surg. 2011;27(3):209–15. https://doi.org/10.3928/1081597X-20100415-02. [published Online First: 2010/05/21].

    Article  PubMed  Google Scholar 

  21. Shah S, Laiquzzaman M, Bhojwani R, et al. Assessment of the biomechanical properties of the cornea with the Ocular Response Analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026–31. https://doi.org/10.1167/iovs.04-0694.

  22. Kerautret J, Colin J, Touboul D, et al. Biomechanical characteristics of the ectatic cornea. J Cataract Refract Surg. 2008;34(3):510–3. https://doi.org/10.1016/j.jcrs.2007.11.018. S0886-3350(07)02042-1 [pii] [published Online First: 2008/02/27].

    Article  PubMed  Google Scholar 

  23. Galletti JD, Ruisenor Vazquez PR, Fuentes Bonthoux F, et al. Multivariate analysis of the Ocular Response Analyzer’s corneal deformation response curve for early keratoconus detection. J Ophthalmol. 2015;2015:496382. https://doi.org/10.1155/2015/496382. [published Online First: 2015/06/16].

  24. Hallahan KM, Sinha Roy A, Ambrosio R Jr, et al. Discriminant value of custom Ocular Response Analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121(2):459–68. https://doi.org/10.1016/j.ophtha.2013.09.013.

  25. Ventura BV, Machado AP, Ambrosio R Jr, et al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg. 2013;29(9):637–43. https://doi.org/10.3928/1081597X-20130819-05. [published Online First: 2013/09/11].

    Article  PubMed  Google Scholar 

  26. Luz A, Fontes BM, Lopes B, et al. ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes. Arq Bras Oftalmol. 2013;76(2):111–7. https://doi.org/10.1590/S0004-27492013000200011. [pii] [published Online First: 2013/07/06].

    Article  PubMed  Google Scholar 

  27. Mikielewicz M, Kotliar K, Barraquer RI, et al. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol. 2011;95(6):793–8. https://doi.org/10.1136/bjo.2010.188300; bjo.2010.188300 [pii] [published Online First: 2011/02/12].

    Article  PubMed  Google Scholar 

  28. Mikielewicz M, Kotliar K, Barraquer RI, et al. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol. 2011;95(6):793–8. https://doi.org/10.1136/bjo.2010.188300.

    Article  PubMed  Google Scholar 

  29. Hallahan KM, Roy AS, Ambrosio R, et al. Discriminant value of custom Ocular Response Analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121(2):459–68.

    Google Scholar 

  30. Luz A, Fontes B, Ramos I, et al. Evaluation of ocular biomechanical indices to distinguish normal from keratoconus eyes. Int J Ker Cor Ect Dis. 2012;1(3):145–50.

    Google Scholar 

  31. Goebels S, Eppig T, Wagenpfeil S, et al. Staging of keratoconus indices regarding tomography, topography, and biomechanical measurements. Am J Ophthalmol. 2015;159(4):733–8. https://doi.org/10.1016/j.ajo.2015.01.014; S0002-9394(15)00043-4 [pii] [published Online First: 2015/01/31].

    Article  PubMed  Google Scholar 

  32. Labiris G, Giarmoukakis A, Gatzioufas Z, et al. Diagnostic capacity of the keratoconus match index and keratoconus match probability in subclinical keratoconus. J Cataract Refract Surg. 2014;40(6):999–1005. https://doi.org/10.1016/j.jcrs.2013.08.064; S0886-3350(14)00361-7 [pii] [published Online First: 2014/04/10].

    Article  PubMed  Google Scholar 

  33. Labiris G, Gatzioufas Z, Sideroudi H, et al. Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability. Acta Ophthalmol. 2013;91(4):e258–62. https://doi.org/10.1111/aos.12056. [published Online First: 2013/04/06].

    Article  PubMed  Google Scholar 

  34. Ambrosio R Jr, Ramos I, Luz A, et al. Dynamic ultra-high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72

    Google Scholar 

  35. Pinero DP, Alcon N. In vivo characterization of corneal biomechanics. J Cataract Refract Surg. 2014;40(6):870–87. https://doi.org/10.1016/j.jcrs.2014.03.021.

    Article  PubMed  Google Scholar 

  36. Valbon BF, Ambrosio R Jr, Fontes BM, et al. Ocular biomechanical metrics by Corvis ST in healthy Brazilian patients. J Refract Surg. 2014;30(7):468–73. https://doi.org/10.3928/1081597X-20140521-01. [published Online First: 2014/06/01].

  37. Valbon BF, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76(4):229–32.

    Article  PubMed  Google Scholar 

  38. Ye C, Yu M, Lai G, et al. Variability of corneal deformation response in normal and keratoconic eyes. Optom Vis Sci. 2015;92(7):e149–53. https://doi.org/10.1097/OPX.0000000000000628. [published Online First: 2015/05/24].

    Article  PubMed  Google Scholar 

  39. Koprowski R. Open source software for the analysis of corneal deformation parameters on the images from the Corvis tonometer. Biomed Eng Online. 2015;14:31. https://doi.org/10.1186/s12938-015-0027-3; s12938-015-0027-3 [pii] [published Online First: 2015/04/19].

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bak-Nielsen S, Pedersen IB, Ivarsen A, et al. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34(1):71–7. https://doi.org/10.1097/ICO.0000000000000293. [published Online First: 2014/11/14].

    Article  PubMed  Google Scholar 

  41. Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact Scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55(6):3651–9. https://doi.org/10.1167/iovs.13-13715.

  42. Nemeth G, Hassan Z, Csutak A, et al. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29(8):558–63. https://doi.org/10.3928/1081597X-20130719-06. [published Online First: 2013/08/06].

    Article  PubMed  Google Scholar 

  43. Tian L, Ko MW, Wang LK, et al. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg. 2014;30(11):785–91. https://doi.org/10.3928/1081597X-20140930-01. [published Online First: 2014/10/08].

    Article  PubMed  Google Scholar 

  44. Koprowski R, Ambrosio R Jr. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Comput Biol Med. 2015;66:170–8. https://doi.org/10.1016/j.compbiomed.2015.09.007; S0010-4825(15)00315-7 [pii] [published Online First: 2015/09/28].

    Article  PubMed  Google Scholar 

  45. Steinberg J, Katz T, Lucke K, et al. Screening for keratoconus with new dynamic biomechanical in vivo Scheimpflug analyses. Cornea. 2015;34(11):1404–12. https://doi.org/10.1097/ICO.0000000000000598. [published Online First: 2015/09/12].

  46. Ji C, Yu J, Li T, et al. Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. Biomed Eng Online. 2015;14:53. https://doi.org/10.1186/s12938-015-0036-2; s12938-015-0036-2 [pii] [published Online First: 2015/06/05].

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vellara HR, Patel DV. Biomechanical properties of the keratoconic cornea: a review. Clin Exp Optom. 2015;98(1):31–8. https://doi.org/10.1111/cxo.12211; [published Online First: 2014/12/30].

    Article  PubMed  Google Scholar 

  48. Lanza M, Cennamo M, Iaccarino S, et al. Evaluation of corneal deformation analyzed with Scheimpflug based device in healthy eyes and diseased ones. Biomed Res Int. 2014;2014:748671. https://doi.org/10.1155/2014/748671. [published Online First: 2014/07/24].

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bak-Nielsen S, Pedersen IB, Ivarsen A, et al. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg. 2014;30(6):408–14. https://doi.org/10.3928/1081597X-20140513-02. [published Online First: 2014/06/28].

    Article  PubMed  Google Scholar 

  50. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40(6):1013–20. https://doi.org/10.1016/j.jcrs.2013.12.012; S0886-3350(14)00363-0 [pii] [published Online First: 2014/05/27].

    Article  PubMed  Google Scholar 

  51. Tian L, Huang YF, Wang LQ, et al. Corneal biomechanical assessment using corneal visualization Scheimpflug technology in keratoconic and normal eyes. J Ophthalmol. 2014;2014:147516. https://doi.org/10.1155/2014/147516. [published Online First: 2014/05/07].

  52. Smedowski A, Weglarz B, Tarnawska D, et al. Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Invest Ophthalmol Vis Sci. 2014;55(2):666–73. https://doi.org/10.1167/iovs.13-13172; iovs.13-13172 [pii] [published Online First: 2014/01/16].

    Article  PubMed  Google Scholar 

  53. Vinciguerra R, Ambrósio R, Elsheikh A, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10.

    Article  PubMed  Google Scholar 

  54. Ambrósio R, Lopes BT, Faria-Correia F, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43.

    Article  PubMed  Google Scholar 

  55. Ambrósio RJ, Lopes BT, Faria-Correia F, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43.

    Google Scholar 

  56. Ambrósio R Jr, Ramos I, Lopes B, et al. Assessing ectasia susceptibility prior to LASIK: the role of age and residual stromal bed (RSB) in conjunction to Belin–Ambrósio deviation index (BAD-D). Rev Bras Oftalmol. 2014;73:75–80.

    Google Scholar 

  57. Ambrosio R Jr, Valbon BF, Faria-Correia F, et al. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol. 2013;24(4):310–20. https://doi.org/10.1097/ICU.0b013e3283622a94.

    Article  PubMed  Google Scholar 

  58. Vinciguerra R, Ambrosio R Jr, Elsheikh A, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10. https://doi.org/10.3928/1081597X-20160629-01.

    Article  PubMed  Google Scholar 

  59. Scarcelli G, Besner S, Pineda R, et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55(7):4490–5. https://doi.org/10.1167/iovs.14-14450; iovs.14-14450 [pii] [published Online First: 2014/06/19].

    Article  PubMed  PubMed Central  Google Scholar 

  60. Girard MJ, Dupps WJ, Baskaran M, et al. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res. 2015;40(1):1–18. https://doi.org/10.3109/02713683.2014.914543. [published Online First: 2014/05/17].

    Article  PubMed  Google Scholar 

  61. Scarcelli G, Kling S, Quijano E, et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54(2):1418–25. https://doi.org/10.1167/iovs.12-11387; iovs.12-11387 [pii] [published Online First: 2013/01/31].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luz, A., Salomão, M.Q., Ambrósio, R. (2022). Corneal Biomechanics in Keratoconus Diagnosis. In: Almodin, E., Nassaralla, B.A., Sandes, J. (eds) Keratoconus . Springer, Cham. https://doi.org/10.1007/978-3-030-85361-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85361-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85360-0

  • Online ISBN: 978-3-030-85361-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics