Skip to main content

Analysis of Persistently Excited Nonlinear Systems with Applications

  • Conference paper
  • First Online:
15th European Workshop on Advanced Control and Diagnosis (ACD 2019) (ACD 2019 2018)

Abstract

Issues concerning locality and robustness for persistently excited nonlinear systems can be addressed on the basis of a recently presented strict quadratic Lyapunov function. Such Lyapunov function is characterized by a “stable” linear time-invariant matrix differential equation, whose solution, at runtime, is available from direct integration of measured quantities. Several applications (even including experiments) are here presented to illustrate the benefits of such a new technical tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the aforementioned operating conditions, according to [30] we have \(\phi _{ra} = M i_{sa}+c \phi _{rb}\), \(\phi _{rb} = M i_{sb}-c \phi _{ra}\), in terms of \(c = {T_{L}L_{r}}/({\phi _{ra}^{2}+\phi _{rb}^{2})}\).

  2. 2.

    Take for instance the scalar signal

    $$\begin{aligned} y(t)= & {} \theta _{1} \sin \left( \theta _{2}\cos (t)\right) \end{aligned}$$

    depending on two positive parameters \(\theta _{1}\) and \(\theta _{2}\).

References

  1. Anderson, B.D.O.: Exponential stability of linear equations arising in adaptive identification. IEEE Trans. Autom. Control 22, 83–88 (1977)

    Google Scholar 

  2. Asheghan, M.M., Míguez, J.: Stability analysis and robust control of heart beat rate during treadmill exercise. Automatica 63, 311–320 (2016)

    Google Scholar 

  3. Barabanov, N., Ortega, R.: On global asymptotic stability of \(\dot{x}=-\phi (t)\phi ^{\rm T}(t)x\) with \(\phi \) not persistently exciting. Syst. Control Lett. 109, 24–29 (2017)

    Google Scholar 

  4. Besançon, G., Bornard, G., Hammouri, H.: Observer synthesis for a class of nonlinear control systems. Euro. J. Control 2, 176–192 (1996)

    Google Scholar 

  5. Burden, R.L., Faires, J.D.: Numerical Analysis. Thomson Brooks/Cole, Belmont, USA (2005)

    Google Scholar 

  6. Cavallo, A., De Maria, G., Natale, C., Pirozzi, S.: Robust control of flexible structures with stable bandpass controllers. Automatica 44, 1251–1260 (2008)

    Google Scholar 

  7. Consolini, L., Verrelli, C.M.: Learning control in spatial coordinates for the path-following of autonomous vehicles. Automatica 50, 1867–1874 (2014)

    Google Scholar 

  8. De Luca, A., Oriolo, G., Samson, C.: Feedback Control of a nonholonomic car-like robot. In: Laumond , J.-P. (ed.) Robot Motion Planning and Control, Lectures Notes in Control and Information Sciences, vol. 229, pp. 171–253. Springer, Berlin (1998)

    Google Scholar 

  9. Efimov, D., Fradkov, A.: Design of impulsive adaptive observers for improvement of persistency of excitation. Int. J. Adaptive Control Signal Process. 1–18 (2014)

    Google Scholar 

  10. Gu, W., Cai, S., Hu, Y., Zhang, H., Chen, H.: Trajectory planning and tracking control of a ground mobile robot: a reconstruction approach towards space vehicle. ISA Trans. (2018). https://doi.org/10.1016/j.isatra.2018.11.019

  11. Loria, A., Panteley, E.: Uniform exponential stability of linear time-varying systems: revisited. Syst. Control Lett. 47, 13–24 (2002)

    Google Scholar 

  12. Maghenem, M.A., Loria, A.: Strict Lyapunov functions for time-varying systems with persistency of excitation. Automatica 78, 274–279 (2017)

    Google Scholar 

  13. Maghenem, M., Loria, A.: Lyapunov functions for persistently-excited cascaded time-varying systems: application to consensus. IEEE Trans. Autom. Control 62, 3416–3422 (2017)

    Article  MathSciNet  Google Scholar 

  14. Mazenc, F.: Strict Lyapunov functions for time-varying systems. Automatica 39, 349–353 (2003)

    Article  MathSciNet  Google Scholar 

  15. Marino, R., Tomei, P.: Global estimation of \(n\) unknown frequencies. IEEE Trans. Autom. Control 47, 1324–1328 (2002)

    Google Scholar 

  16. Marino, R., Tomei, P.: Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans. Autom. Control 40, 1300–1304 (1995)

    Article  MathSciNet  Google Scholar 

  17. Marino, R., Santosuosso, G.L., Tomei, P.: Robust adaptive observers for nonlinear systems with bounded disturbances. IEEE Trans. Autom. Control 46, 967–972 (2001)

    Article  MathSciNet  Google Scholar 

  18. Marino, R., Tomei, P.: Output regulation of unknown stable linear systems. IEEE Trans. Autom. Control 60, 2213–2218 (2015)

    Article  MathSciNet  Google Scholar 

  19. Marino, R., Tomei, P.: Hybrid adaptive multi-sinusoidal disturbance cancellation. IEEE Trans. Autom. Control 62, 4023–4030 (2016)

    Article  MathSciNet  Google Scholar 

  20. Marino, R., Tomei, P., Verrelli, C.M.: A new flux observer for induction motors with on-line identification of load torque and resistances. In: 18th IFAC World Congress, vol. 18, pp. 6172–6177. Milano (2011)

    Google Scholar 

  21. Paradiso, M., Pietrosanti, S., Scalzi, S., Tomei, P., Verrelli, C.M.: Experimental heart rate regulation in cycle-ergometer exercises. IEEE Trans. Biomed. Eng. 60, 135–139 (2013)

    Article  Google Scholar 

  22. Progromsky, A.Y., Matveev, A.S.: Stability analysis of PE systems via Steklov’s averaging technique. Int. J. Adaptive Control Signal Process. 31, 138–144 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sastry, S., Bodson, M.: Adaptive Control—Stability, Convergence, and Robustness. Prentice Hall, Englewood Cliffs, New Jersey (1989)

    Google Scholar 

  24. Scalzi, S., Tomei, P., Verrelli, C.M.: Nonlinear control techniques for the hear rate regulation in treadmill exercises. IEEE Trans. Biomed. Eng. 59, 599–603 (2012)

    Article  Google Scholar 

  25. Tomei, P., Verrelli, C.M.: A nonlinear adaptive speed tracking control for sensorless permanent magnet step motors with unknown load torque. Int. J. Adaptive Control Signal Process. 22, 266–288 (2008)

    Article  MathSciNet  Google Scholar 

  26. Tomei, P., Verrelli, C.M.: Observer-based speed tracking control for sensorless permanent magnet synchronous motors with unknown load torque. IEEE Trans. Autom. Control 56, 1484–1488 (2011)

    Article  MathSciNet  Google Scholar 

  27. Tomei, P., Verrelli, C.M.: Novel algorithms for the synchronization control of nonlinear systems. Int. J. Adaptive Control Signal Process. 30, 608–633 (2016)

    Article  MathSciNet  Google Scholar 

  28. Tomei, P., Verrelli, C.M.: Advances on adaptive learning control: the case of non-minimum phase linear systems. Syst. Control Lett. 115, 55–62 (2018)

    Article  MathSciNet  Google Scholar 

  29. Verrelli, C.M.: Fourier series expansion for synchronization of permanent magnet electric motors. Appl. Math. Comput. 217, 4502–4515 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Verrelli, C.M.: Insights on observability and identifiability properties of induction motors at steady-state. In: IFAC International Workshop on Adaptation and Learning in Control and Signal Processing ALCOSP, vol. 11, pp. 110–115. Caen, France (2013)

    Google Scholar 

  31. Verrelli, C.M., Savoia, A., Mengoni, M., Marino, R., Tomei, P., Zarri, L.: On-line identification of winding resistances and load torque in induction machines. IEEE Trans. Control Syst. Technol. 22, 1629–1637 (2014)

    Article  Google Scholar 

  32. Verrelli, C.M., Tomei, P.: Non-anticipating Lyapunov functions for persistently excited nonlinear systems. IEEE Trans. Autom. Control 65, 2634–2639 (2020)

    Article  Google Scholar 

  33. Verrelli, C.M., Tomei, P., Caminiti, G., Iellamo, F., Volterrani, M.: Nonlinear heart rate control in treadmill/cycle-ergometer exercises under the instability constraint. Automatica 127, (2021)

    Google Scholar 

  34. Verrelli, C.M., Tomei, P., Lorenzani, E., Fornari, R., Immovilli, F.: Further results on nonlinear tracking control and parameter estimation for induction motors. Control Eng. Practice 66, 116–125 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Maria Verrelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verrelli, C.M., Tomei, P., Pirozzi, S., Fabiani, S. (2022). Analysis of Persistently Excited Nonlinear Systems with Applications. In: Zattoni, E., Simani, S., Conte, G. (eds) 15th European Workshop on Advanced Control and Diagnosis (ACD 2019). ACD 2019 2018. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-85318-1_8

Download citation

Publish with us

Policies and ethics