Skip to main content

Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

The heterogeneity of brain tumours at the molecular, metabolic and structural levels poses significant challenge for accurate tissue characterisation. Artificial intelligence and radiomics have emerged as valuable tools to analyse quantitative features extracted from medical images which capture the complex microenvironment of brain tumours. In particular, a number of computational tools including machine learning algorithms have been proposed for image preprocessing, tumour segmentation, feature extraction, classification, and prognostic stratifications as well. In this chapter, we explore the fundamentals of multiparametric brain tumour characterisation, as an understanding of the strengths, limitations and applications of these tools allows clinicians to better develop and evaluate models with improved diagnostic and prognostic value in brain tumour patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inda MD-M, Bonavia R, Seoane J. Glioblastoma multiforme:a look inside its heterogeneous nature. Cancers (Basel). 2014;6:226–39. https://doi.org/10.3390/cancers6010226.

    Article  PubMed  CAS  Google Scholar 

  2. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, Van Wijk Y, Woodruff H, Van Soest J, Lustberg T, Roelofs E, Van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141.

    Article  PubMed  Google Scholar 

  3. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. 2018;83:181–92.

    Google Scholar 

  4. Devos A, Simonetti AW, Van Der Graaf M, Lukas L, Suykens JAK, Vanhamme L, Buydens LMC, Heerschap A, Van Huffel S. The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson. 2005;173:218–28.

    Article  PubMed  CAS  Google Scholar 

  5. Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf R, Melhem ER, Davatzikos C. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. 2009;62:1609–18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Ieva A, Le Reste PJ, Carsin-Nicol B, Ferre JC, Cusimano MD. Diagnostic value of fractal analysis for the differentiation of brain tumors using 3-tesla magnetic resonance susceptibility-weighted imaging. Neurosurgery. 2016;79:839–46.

    Article  PubMed  Google Scholar 

  7. Suh HB, Choi YS, Bae S, Ahn SS, Chang JH, Kang SG, Kim EH, Kim SH, Lee SK. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol. 2018;28:3832–9. https://doi.org/10.1007/s00330-018-5368-4.

    Article  PubMed  Google Scholar 

  8. Petrujkić K, Milošević N, Rajković N, Stanisavljević D, Gavrilović S, Dželebdžić D, Ilić R, Di Ieva A, Maksimović R. Computational quantitative MR image features - a potential useful tool in differentiating glioblastoma from solitary brain metastasis. Eur J Radiol. 2019;119:108634. https://doi.org/10.1016/j.ejrad.2019.08.003.

    Article  PubMed  Google Scholar 

  9. Di Ieva A, Russo C, Le Reste P-J, Magnussen J, Heller G. Advanced computational and statistical multiparametric analysis of susceptibility-weighted imaging to characterize gliomas and brain metastases. bioRxiv. 2020; https://doi.org/10.1101/2020.04.24.060830.

  10. Di Ieva A, Göd S, Grabner G, Grizzi F, Sherif C, Matula C, Tschabitscher M, Trattnig S. Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology. 2013;55:35–40. https://doi.org/10.1007/s00234-012-1081-1.

    Article  PubMed  Google Scholar 

  11. Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han Y, Sun YZ, Liu ZC, Tian Q, Han ZY, De Liu L, Hu BQ, Qiu ZY, Wang W, Bin CG. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget. 2017;8:47816–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vamvakas A, Williams SC, Theodorou K, Kapsalaki E, Fountas K, Kappas C, Vassiou K, Tsougos I. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys Med. 2019;60:188–98. https://doi.org/10.1016/j.ejmp.2019.03.014.

    Article  PubMed  CAS  Google Scholar 

  13. Alis D, Bagcilar O, Senli YD, Yergin M, Isler C, Kocer N, Islak C, Kizilkilic O. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Jpn J Radiol. 2020;38:135–43. https://doi.org/10.1007/s11604-019-00902-7.

    Article  PubMed  CAS  Google Scholar 

  14. Bisdas S, Shen H, Thust S, Katsaros V, Stranjalis G, Boskos C, Brandner S, Zhang J. Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep. 2018;8:1–9.

    Article  CAS  Google Scholar 

  15. Akkus Z, Ali I, Sedlář J, Agrawal JP, Parney IF, Giannini C, Erickson BJ. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging. 2017;30:469–76.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cui Y, Tha KK, Terasaka S, Yamaguchi S, Wang J, Kudo K, Xing L, Shirato H, Li R. Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology. 2016;278:546–53. https://doi.org/10.1148/radiol.2015150358.

    Article  PubMed  Google Scholar 

  17. Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, Kiesel B, Wadsak W, Beyer T, Hacker M, Traub-Weidinger T. Glioma survival prediction with combined analysis of in vivo 11 C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med. 2018;59:892–9. https://doi.org/10.2967/jnumed.117.202267.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging. 2017;46:115–23. https://doi.org/10.1002/jmri.25497.

    Article  PubMed  Google Scholar 

  19. Nael K, Bauer AH, Hormigo A, Lemole M, Germano IM, Puig J, Stea B. Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma. AJR Am J Roentgenol. 2018;210:18–23. https://doi.org/10.2214/AJR.17.18003.

    Article  PubMed  Google Scholar 

  20. Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, Yoo RE, Choi SH, Kim HS. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology. 2019;21:404–14.

    Article  PubMed  Google Scholar 

  21. Gao Y, Xiao X, Han B, Li G, Ning X, Wang D, Cai W, Kikinis R, Berkovsky S, Di Ieva A, Zhang L, Ji N, Liu S. A deep learning methodology for differentiating glioma recurrence from radiation necrosis using multimodal MRI: algorithm development and validation. JMIR Med Inform. 2020;8(11):e19805. https://doi.org/10.2196/19805.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Svolos P, Kousi E, Kapsalaki E, Theodorou K, Fezoulidis I, Kappas C, Tsougos I. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives. Cancer Imaging. 2014;14(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Dijken BRJ, van Laar PJ, Holtman GA, van der Hoorn A. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol. 2017;27:4129–44. https://doi.org/10.1007/s00330-017-4789-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Di Ieva A, Choi C, Magnussen JS. Spectrobiopsy in neurodiagnostics: the new era. Neuroradiology. 2018;60:129–31. https://doi.org/10.1007/s00234-017-1957-1.

    Article  PubMed  Google Scholar 

  25. Di Ieva A, Magnussen JS, McIntosh J, Mulcahy MJ, Pardey M, Choi C. Magnetic resonance spectroscopic assessment of Isocitrate dehydrogenase status in gliomas: the new frontiers of spectrobiopsy in neurodiagnostics. World Neurosurg. 2020;133:e421–7. https://doi.org/10.1016/j.wneu.2019.09.040.

    Article  PubMed  Google Scholar 

  26. Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD. Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg. 2015;123:1463–75. https://doi.org/10.3171/2015.1.JNS142349.

    Article  PubMed  Google Scholar 

  27. Haubold J, Demircioglu A, Gratz M, Glas M, Wrede K, Sure U, Antoch G, Keyvani K, Nittka M, Kannengiesser S, Gulani V, Griswold M, Herrmann K, Forsting M, Nensa F, Umutlu L. Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR fingerprinting. Eur J Nucl Med Mol Imaging. 2019; https://doi.org/10.1007/s00259-019-04602-2.

  28. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65. https://doi.org/10.1007/s00259-016-3427-0.

    Article  PubMed  Google Scholar 

  29. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23(Suppl 1):S208–19.

    Article  PubMed  Google Scholar 

  30. Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg. 2012;77:785.e11–21. https://doi.org/10.1016/j.wneu.2011.09.006.

    Article  PubMed  Google Scholar 

  31. Russo C. Brightness progressive normalization. 2011. http://www.fractal-lab.org/Downloads/bpn_algorithm.html. Accessed 8 Nov 2020.

  32. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17:87–97.

    Article  PubMed  CAS  Google Scholar 

  33. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41. https://doi.org/10.1016/j.media.2007.06.004.

    Article  PubMed  CAS  Google Scholar 

  34. Isensee F, Schell M, Pflueger I, Brugnara G, Bonekamp D, Neuberger U, Wick A, Schlemmer HP, Heiland S, Wick W, Bendszus M, Maier-Hein KH, Kickingereder P. Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp. 2019;40:4952–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Russo C, Liu S, Di Ieva A. Spherical coordinates transformation preprocessing in deep convolution neural networks for brain tumor segmentation in MRI. arXiv. 2020. http://arxiv.org/abs/2008.07090.

  36. Pomponio R, Erus G, Habes M, Doshi J, Srinivasan D, Mamourian E, Bashyam V, Nasrallah IM, Satterthwaite TD, Fan Y, Launer LJ, Masters CL, Maruff P, Zhuo C, Völzke H, Johnson SC, Fripp J, Koutsouleris N, Wolf DH, Gur R, Gur R, Morris J, Albert MS, Grabe HJ, Resnick SM, Bryan RN, Wolk DA, Shinohara RT, Shou H, Davatzikos C. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage. 2020;208 https://doi.org/10.1016/j.neuroimage.2019.116450.

  37. Sawlani V, Patel MD, Davies N, Flintham R, Wesolowski R, Ughratdar I, Pohl U, Nagaraju S, Petrik V, Kay A, Jacob S, Sanghera P, Wykes V, Watts C, Poptani H. Multiparametric MRI: practical approach and pictorial review of a useful tool in the evaluation of brain tumours and tumour-like lesions. Insights Imaging. 2020;11:84. https://doi.org/10.1186/s13244-020-00888-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kubben PL, Postma AA, Kessels AGH, van Overbeeke JJ, van Santbrink H. Intraobserver and interobserver agreement in volumetric assessment of glioblastoma multiforme resection. Neurosurgery. 2010;67:1329–34.

    Article  PubMed  Google Scholar 

  39. Visser M, Müller DMJ, van Duijn RJM, Smits M, Verburg N, Hendriks EJ, Nabuurs RJA, Bot JCJ, Eijgelaar RS, Witte M, van Herk MB, Barkhof F, de Witt Hamer PC, de Munck JC. Inter-rater agreement in glioma segmentations on longitudinal MRI. NeuroImage Clin. 2019;22:101727. https://doi.org/10.1016/j.nicl.2019.101727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liu S, Song Y, Zhang F, Feng D, Fulham M, Cai W. Clique identification and propagation for multimodal brain Tumor image segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2016;9919 LNAI:285–94. https://doi.org/10.1007/978-3-319-47103-7_28.

    Article  Google Scholar 

  41. Işin A, Direkoelu C, Şah M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci. 2016;102:317–24. https://doi.org/10.1016/j.procs.2016.09.407.

    Article  Google Scholar 

  42. Jang K, Russo C, Di Ieva A. Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis. Neuroradiology. 2020;62:771–90. https://doi.org/10.1007/s00234-020-02403-1.

  43. Haralick RM, Dinstein I, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3(6):610–21.

    Article  Google Scholar 

  44. Artzi M, Bressler I, Ben Bashat D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging. 2019;50:519–28. https://doi.org/10.1002/jmri.26643.

    Article  PubMed  Google Scholar 

  45. Di Ieva A. The fractal geometry of the brain. New York: Springer; 2016.

    Book  Google Scholar 

  46. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-Landrove M. Fractals in the neurosciences, part II. Neuroscience. 2015;21:30–43. https://doi.org/10.1177/1073858413513928.

    Article  Google Scholar 

  47. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscience. 2014;20:403–17. https://doi.org/10.1177/1073858413513927.

    Article  CAS  Google Scholar 

  48. Iftekharuddin KM, Jia W, Marsh R. Fractal analysis of tumor in brain MR images. Mach Vis Appl. 2003;13:352–62.

    Article  Google Scholar 

  49. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H. Feature selection: a data perspective. ACM Comput Surv. 2017;50(6):94.

    Google Scholar 

  50. Pearson K. LIII. On lines and planes of closest fit to systems of points in space. Lond Edin Dublin Philos Mag J Sci. 1901;2:559–72. https://doi.org/10.1080/14786440109462720.

    Article  Google Scholar 

  51. Cattell R, Chen S, Huang C. Robustness of radiomic features in magnetic resonance imaging: review and a phantom study. Vis Comput Ind Biomed Art. 2019;2(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yoon RG, Kim HS, Koh MJ, Shim WH, Jung SC, Kim SJ, Kim JH. Differentiation of recurrent glioblastoma from delayed radiation necrosis by using voxel-based multiparametric analysis of MR imaging data. Radiology. 2017;285:206–13. https://doi.org/10.1148/radiol.2017161588.

    Article  PubMed  Google Scholar 

  53. Liu S, Shah Z, Sav A, Russo C, Berkovsky S, Qian Y, Coiera E, Di Ieva A. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci Rep. 2020;10:7733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Feng Y-Z, Liu S, Cheng Z, Quiroz JC, Rezazadegan D, Chen P, Lin Q, Qian L, Liu X, Berkovsky S, Coiera E, Song L, Qiu X, Cai X. Severity assessment and progression prediction of COVID-19 patients based on the LesionEncoder framework and chest CT. medRxiv. 2020; https://doi.org/10.1101/2020.08.03.20167007.

  55. Russo C, Liu S, Di Ieva A. Impact of spherical coordinates transformation pre- processing in deep convolution neural networks for brain tumor segmentation and survival prediction. In: Brain lesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Berlin: Springer; 2020.

    Google Scholar 

  56. Di Ieva A, Russo C. Fractal dimension estimator. 2014. http://www.fractal-lab.org/Downloads/FDEstimator.html. Accessed 18 Nov 2020.

Download references

Acknowledgements

Prof. Antonio Di Ieva acknowledges the Royal Australasian College of Surgeons (RACS) for the 2019 John Mitchell Crouch Fellowship, which allowed the foundation of the Computational NeuroSurgery (CNS) Lab at Macquarie University. Moreover, he is funded by the Australian National Health and Medical Research Council (NHMRC) and by the Australian Research Council (ARC).

Dr. Sidong Liu acknowledges the support of an Australian National Health and Medical Research Council grant (NHMRC Early Career Fellowship).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jian, A., Jang, K., Russo, C., Liu, S., Di Ieva, A. (2022). Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics