Skip to main content

Predictive Algorithm for Tuyere Areas’ Parameters and Control Over the Distribution of Blast Parameters Around a Blast Furnace

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021) (ICIE 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 491 Accesses

Abstract

In the article, one has presented a mathematical description and an algorithm for prediction of tuyere areas’ parameters and control over the distribution of blast parameters around a blast furnace based on the application of patterns of heat transfer between the hot blast and cooling water for tuyere elements. The algorithm has been designed to align the thermal condition of the tuyere areas of a blast furnace along the circumference. It entails the calculation of the following parameters for each tuyere: output and composition of the hearth gas, heat removal from a tuyere, hot blast blowout velocity from a tuyere, kinetic energy of the hot blast, total mechanical energy of the blast flow, length of circulation and oxidation zones, and theoretical combustion temperature. One calculates the mean values of parameters, the area of oxidation zones, and the relative area of tuyere areas. It has been shown that, in case of the non-uniform distribution of the hot blast to tuyeres, to stabilize the thermal state of tuyere areas and to align the gas distribution along the furnace circumference, one is required to adjust the natural gas flow rate to each tuyere to maintain the theoretical combustion temperature at a target level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bol’shakov VI (2007) Technology of highly efficient energy-saving blast-furnace smelting. Naukova Dumka, Kiev, pp 411

    Google Scholar 

  2. Tovarovskii IG (2009) Blast furnace smelting. Porogi, Dnepropetrovsk, pp 768

    Google Scholar 

  3. Geerdes M, Chaigneau R, Lingiardi O et al (2020) Modern blast furnace ironmaking: an introduction (4th edn), pp 274

    Google Scholar 

  4. Kurunov IF (2015) Modern state of blast-furnace production in China, Japan, South Korea, Western Europe, North and South America. Metallurg 7:12–22

    Google Scholar 

  5. Peacey JG, Davenport WG (1979) The iron blast furnace: theory and practice. Pergamon Press, pp 266

    Google Scholar 

  6. Ertem ME, Gurgen S (2006) Energy balance analysis for Erdemir blast furnace number one. Appl Therm Eng 26:1139–1148

    Article  Google Scholar 

  7. Shirshov MYu, Druzhkov VG, Pavlov AV, Prokhorov IE (2014) Results of evaluation of the uniformity of distribution of the blast over the tuyeres of blast furnaces. In: Theory and technology of metallurgical production, Magnitogorsk State Technical University, Magnitogorsk, vol 2, pp 27–31

    Google Scholar 

  8. Nakajima R, Kishimoto S, Hotta H, Ishii K (1990) New technology of blast-furnace smelting with the use of regulating valves of hot blast in the tuyere devices. NKK Tech Rev 59:1–7

    Google Scholar 

  9. Mozharenko NM, Paranosenkov AA, Negoda VI (2005) Development of the systems of monitoring and regulation of the hot blast flow rate in air tuyeres of the blast furnace. In: Fundamental and applied problems in ferrous metallurgy, Institute of Ferrous Metallurgy, vol 10. Ukrainian NAS, Dnipropetrovs’k, pp 71–78

    Google Scholar 

  10. Mozharenko NM, Kanaev VV, Paranosenkov AA et al (2005) Automated system of monitoring of the blast flow rate in air tuyeres of the blast furnace. In: Fundamental and applied problems of ferrous metallurgy, Institute of Ferrous Metallurgy, vol 11. Ukrainian NAS, Dnipropetrovs’k, pp 34–42

    Google Scholar 

  11. Kanaev VV, Kobeza II, Buzoverya MT, Shuliko ST (1995) Monitoring of the distribution of blast over the air tuyeres of a blast furnace. Metallurg. Gorno-Rudn Promysh 2:69–71

    Google Scholar 

  12. Bugaev KM, Antonov VM, Varshavskii GV et al (1987) Vlijanie raspredelenija dut’ja po furmam na gazovyj potok v domennoj pechi (Influence of the distribution of blast by tuyeres on the gas flow in a blast furnace). Steel 2:17–22

    Google Scholar 

  13. Polinov AA, Pavlov AV, Onorin OP et al (2018) Blast distribution over the air Tuyeres of a blast furnace. Metallurgist 62(5–6):418–424

    Article  Google Scholar 

  14. Andronov VN, Belov YuA (2002) Estimation of the efficiency of distributions of blast and natural gas over the tuyeres. Steel 9:15–17

    Google Scholar 

  15. Lyalyuk VP, Tarakanov AK, Kassim DA, Riznickii IG (2018) Increasing uniformity of blast distribution along BF circumference. Metallurg 2:30–34

    Google Scholar 

  16. Lyalyuk VP, Kassim DA, Tovarovskii IG (2018) Uniformity of blast-furnace parameters over the perimeter. Steel Translation 48(3):179–184

    Article  Google Scholar 

  17. Lyalyuk VP, Tovarovskii IG (2003) Vybor rezhimov domennoj plavki na kombinirovannom dut’e s ocenkoj parametrov furmennoj zony (Selection of modes of blast-furnace smelting on combined blast with estimation of the parameters of tuyere zones). Chernye Metally 11:13–16

    Google Scholar 

  18. Lyalyuk VP (2020) Analysis of the blast furnace operations with a volume of 5000 m3 on tuyeres of different diameters from the positions of full mechanical energies of flows of combined blow and hearth gas. Ferrous Metallurgy. Bull Sci Tech Econ Inf 76(7):691–699

    Google Scholar 

  19. Onorin OP, Spirin NA, Terent’ev VL et al (2005) Komp'juternye metody modelirovanija domennogo processa (Computer methods of simulation of the blast-furnace process). USTU-UPI, Ekaterinburg, pp 301

    Google Scholar 

  20. Spirin NA, Lavrov VV, Rybolovlev VYu et al (2011) Model’nye sistemy podderzhki prinjatija reshenij v ASU TP domennoj plavki metallurgii (Model systems for the support of decision making in automatic systems of control over the technological process of blast-furnace smelting in metallurgy). UrFU, Ekaterinburg, pp 462

    Google Scholar 

  21. Spirin NA, Lavrov VV, Rybolovlev VYu et al (2014) Matematicheskoe modelirovanie metallurgicheskih processov v ASU TP (Mathematical modeling of metallurgical processes in automated process control systems). UrFU, Ekaterinburg, pp 558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Gurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurin, I.A., Spirin, N.A., Lavrov, V.V. (2022). Predictive Algorithm for Tuyere Areas’ Parameters and Control Over the Distribution of Blast Parameters Around a Blast Furnace. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021). ICIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-85233-7_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85233-7_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85232-0

  • Online ISBN: 978-3-030-85233-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics