Skip to main content

The Equation of State of Neutron Star Matter

  • Chapter
  • First Online:
Millisecond Pulsars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 465))

  • 778 Accesses

Abstract

Neutron stars are remarkable natural laboratories that allow us to investigate the fundamental constituents of matter and their interactions under extreme conditions that cannot be reproduced in terrestrial laboratories. This chapter gives a brief pedagogical introduction to the physics of matter at very high densities (i.e. up to several times the density of atomic nuclei) that hopefully could be useful to researchers in pulsars’ astrophysics and related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Stellar masses will be given in unit of the mass of the Sun, M  = 1.988  × 1033g.

  2. 2.

    The star may also contain species of identical bosons as in the case of negative pions (π ) or negative kaons (K ) condensation.

  3. 3.

    The Coulomb interaction, together with finite size effects (mainly surface effects), is responsible for the formation of the so called nuclear pasta phases in the neutron star crust [13]. For the same physical reasons, similar quark matter pasta phases could appear inside hybrid stars [14].

  4. 4.

    k B T = 1 MeV corresponds to T ≃ 1.134 × 1010 K.

  5. 5.

    i.e. imagine for a moment to “switch off” the weak interaction.

  6. 6.

    This is possible if the electron Fermi momentum satisfies , thus for densities .

  7. 7.

    Neutrino are trapped in neutron star interior for a few tens of second after their birth [15].

  8. 8.

    Including those considered in the present chapter.

  9. 9.

    Notice that the presence of tiny charge-symmetry breaking (CSB) and charge-independence breaking (CIB) terms in the nuclear interaction (for a review, see e.g. [29]) could invalidate Eq. (9.23). For example a CSB component in the NN interaction produces a linear (and more generally odd-power) β-term in Eq. (9.23) [30]. However, it has been numerically demonstrated by various authors (e.g. [30] and [31]) that the effects on \({\widetilde E}(n, \beta )\) and on the nuclear symmetry energy of CSB and CIB terms in the nucleon-nucleon interaction are essentially negligible.

  10. 10.

    Hadrons, i.e. particles subject to the strong interaction, can be classified in two groups: baryons if they have spin J = 1∕2, 3∕2, 5∕2, …, or mesons if they have spin J = 0, 1, 2, … . According to the hadrons’ quark model, baryons are colorless bound states of three quarks (q 1 q 2 q 3), and mesons are colorless quark–anti-quark \((q_1 \bar {q}_2\)) bound states.

  11. 11.

    The strong interaction between quarks can be neglected due to the asymptotic freedom of QCD which, for the purpose of the present estimate, is a reasonable approximation at the high densities found in neutron stars cores.

  12. 12.

    The actual mean-life time of the HS will depend on the mass accretion or on the spin-down rate which modifies the nucleation time τ via an explicit time dependence of the stellar central pressure.

  13. 13.

    Since the nucleation time is extremely sensitive to the value of the stellar central pressure P c and thus to its corresponding gravitational mass M HS(P c) (see Fig. 4 and 5 in Ref. [106]), the critical mass value is not influenced by the particular choice τ = 1 yr.

  14. 14.

    The SQM EoS used to calculate the QS configurations reported in Fig. 9.9 satisfies the strange matter hypothesis.

References

  1. Abbott, B.P., et al.: LIGO scientific collaboration and Virgo collaboration. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  2. Abbott, B.P., et al.: LIGO scientific collaboration and Virgo collaboration. Phys. Rev. Lett. 121, 161101 (2018)

    Article  ADS  Google Scholar 

  3. Abbott, B.P., et al.: LIGO scientific collaboration and Virgo collaboration. arXiv:2001.01761

    Google Scholar 

  4. Demorest, P.B., Pennucci, T., Ransom, S., Roberts, M., Hessels, J: Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  5. Antoniadis, J., et al.: Science 340, 1233232 (2013)

    Article  Google Scholar 

  6. Cromartie, H.T., Fonseca, E., M Ransom, S., et al.: Nat. Astron. 4, 72 (2020)

    Google Scholar 

  7. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill Book Company, New York (1971)

    Google Scholar 

  8. Bhattacharyya, S.: Adv. Space Res. 45, 949 (2010)

    Article  ADS  Google Scholar 

  9. Watts, A.L.: AIP Conference Proceedings 2127, 020008 (2019). https://doi.org/10.1063/1.5117798

    Article  Google Scholar 

  10. Miller, M.C.: Astrophysical constraints on dense matter in neutron stars. In: Belloni, T.M., Méndez, M., Zhang, C. (eds.) Timing Neutron Stars: Pulsations, Oscillations and Explosions. Astrophysics and Space Science Library, vol. 461. Springer, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-3-662-62110-3_1

    Google Scholar 

  11. Harrison, B.K., Wakano, M., Wheeler, J.A.: La Structure et l’Evolution de l’Univers. Stoops, Brussels (1958)

    Google Scholar 

  12. Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitation Theory and Gravitational Collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  13. Chamel, N., Haensel, P.: Living Rev. Relativ. 11, 10 (2008)

    Article  ADS  Google Scholar 

  14. Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. Springer, New York (2000)

    Book  MATH  Google Scholar 

  15. Prakash, M., Bombaci, I., Prakash, M., Ellis, J.P., Lattimer, J.M., Knorren, R.: Phys. Rep. 280, 1 (1997)

    Article  ADS  Google Scholar 

  16. J. R. Oppenheimer, G. M. Volkoff, Phys. Rev 55, 374 (1939)

    Article  ADS  Google Scholar 

  17. Brown, L.M., Rechenberg, H.: The Origin of the Concept of Nuclear Forces. Institute of Physics Publishing, Bristol and Philadelphia (1996)

    Google Scholar 

  18. Bombaci, I., Lombardo, U.: Phys. Rev. C 44, 1892 (1991)

    Article  ADS  Google Scholar 

  19. Zuo, W., Bombaci, I., Lombardo, U.: Eur. Phys. J. A 50, 12 (2014)

    Article  ADS  Google Scholar 

  20. Lattimer, J.M.: Gen. Rel. Grav. 46, 1713 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lattimer, J.M., Prakash, M.: Phys. Rep. 621, 127 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kalantar-Nayestanaki, N., Epelbaum, E., Messchendorp, J.G., Nogga, A.: Rep. Prog. Phys. 75, 016301 (2012)

    Article  ADS  Google Scholar 

  23. Hammer, H.W., Nogga, A., Schenk, A.: Rev. Mod. Phys. 85, 197 (2013)

    Article  ADS  Google Scholar 

  24. Wiringa, R.B., Fiks, V., Fabrocini, A.: Phys. Rev. C, 38, 1010 (1988)

    Article  ADS  Google Scholar 

  25. Baldo, M., Bombaci, I., Burgio, G.F.: A&A 328, 274 (1997)

    ADS  Google Scholar 

  26. Akmal, A., Pandharipande, V.R., Ravenhall, D.G.: Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  27. Li, Z.H., Schulze, H.-J.: Phys. Rev. C 78, 028801 (2008)

    Article  ADS  Google Scholar 

  28. Bombaci, I., Logoteta, D.: A&A 609, A128 (2018)

    Article  ADS  Google Scholar 

  29. Miller, G.A., Opper, A.K., Stephenson, E.J.: Ann. Rev. Nucl. Part. Sci. 56, 253 (2006)

    Article  ADS  Google Scholar 

  30. Haensel, P.: J. Phys. G 3, 373 (1997)

    Article  ADS  Google Scholar 

  31. Müther, H., Polls, A., Machleidt, R.: Phys. Lett. B 445, 259 (1999)

    Article  ADS  Google Scholar 

  32. Blaizot, J.P., Gogny, D., Grammaticos, B.: Nucl. Phys. A 265, 315 (1976)

    Article  ADS  Google Scholar 

  33. Shlomo, S., Kolomietz, V.K. Colò, G.: Eur. Phys. J. A 30, 23 (2006)

    Article  ADS  Google Scholar 

  34. Li, B.A., Han, X.: Phys. Lett. B 727, 276 (2013)

    Article  ADS  Google Scholar 

  35. Kievsky, A., Viviani, M., Logoteta, D., Bombaci, I., Girlanda, L.: Phys. Rev. Lett. 121, 072701 (2018)

    Article  ADS  Google Scholar 

  36. Danielewicz, P., Lee, J.: Nucl. Phys. A 922, 1 (2014)

    Article  ADS  Google Scholar 

  37. Roca-Maza, X., et al.: Phys. Rev. C 87, 034301 (2013)

    Article  ADS  Google Scholar 

  38. Tolman, R.C.: Proc. Nat. Acad. Sci. (USA) 20, 169 (1934)

    Google Scholar 

  39. Gulminelli, F., Raduta, Ad.D.: Phys. Rev. C 92, 055803 (2015)

    Google Scholar 

  40. Bombaci, I., Logoteta, D.: EPJ Web of Conferences 117, 07005 (2016)

    Article  Google Scholar 

  41. Bombaci, I.: JPS Conf. Proc. 17, 101002 (2017)

    Google Scholar 

  42. Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  43. Rijken, Th.A., Nagels, M.M., Yamamoto, Y.: Nucl. Phys. A 835, 160, (2010)

    ADS  Google Scholar 

  44. Baldo, M., Burgio, G.F., Schulze, H.-J.: Phys. Rev. C 61, 055801 (2000)

    Article  ADS  Google Scholar 

  45. Vidaña, I., Polls, A., Ramos, A., Engvik, L., Hjorth-Jensen, M.: Phys. Rev. C 62, 035801 (2000)

    Article  ADS  Google Scholar 

  46. Schulze, H.-J., Rijken, Th.A.: Phys. Rev. C 84, 035801 (2011)

    Article  ADS  Google Scholar 

  47. Djapo, H., Schaefer, B.-J., Wambach, J.: Phys. Rev. C 81, 035803 (2010)

    ADS  Google Scholar 

  48. Hashimoto, O., Tamura, H.: Progr. Part. Nucl. Phys. 57, 564 (2006)

    Article  ADS  Google Scholar 

  49. Millener, D.J.: Lect. Notes Phys. 724, 31 (2007)

    Article  ADS  Google Scholar 

  50. Rappold, C., et al., HypHI Collaboration: Nucl. Phys. A 913, 170 (2013)

    ADS  Google Scholar 

  51. Feliciello, A., Nagae, T.: Rep. Progr. Phys. 78, 096301 (2015)

    Article  ADS  Google Scholar 

  52. Tamura, H., et al.: Proceedings, 11th International Conference on Hypernuclear and Strange Particle Physics (HYP 2012): Barcelona, Spain, October 1–5, 2012. Nuclear Phys., vol. A914, p. 99 (2013)

    Article  ADS  Google Scholar 

  53. Botta, E., Bressani, T., Garbarino, G.: Eur. Phys. J. A 48, 41 (2012)

    Article  ADS  Google Scholar 

  54. Curceanu, C., et al.: Acta Phys. Pol. B 46, 203 (2015)

    Article  ADS  Google Scholar 

  55. Gal, A., Hungerford, E.V., Millener, D.J.: Rev. Mod. Phys. 88, 035004 (2016)

    Article  ADS  Google Scholar 

  56. Tolos, L., Fabbietti, L.: Progr. Part. Nucl. Phy. 112, 103770 (2020)

    Article  Google Scholar 

  57. Petschauer, S., Haidenbauer, J., Kaiser, N., Meißner, U.-G., Weise, W.: Front. Phys. 8, 12 (2020)

    Article  Google Scholar 

  58. Spitzer, R.: Phys. Rev. 110, 1190 (1958)

    Article  ADS  Google Scholar 

  59. Bach, G.G.: Nuovo Cimento XI, 73 (1959)

    Google Scholar 

  60. Dalitz, R.H.: 9th Int. Ann. Conf. on High-Energy Physics. Academy of Sciences, USSR, vol. I, p. 587 (1960)

    Google Scholar 

  61. Bodmer, A., Sampanthar, S.: Nucl. Phys. 31, 251 (1962)

    Article  Google Scholar 

  62. Conte, F., Iwao, S.: Nucl. Phys. 58, 291 (1964)

    Article  Google Scholar 

  63. Bodmer, A.R., Murphy, J.W.: Nucl. Phys. 64, 593 (1965)

    Article  Google Scholar 

  64. Gal, A.: Phys. Rev. 152, 975 (1966); Gal, A.: Phys. Rev. Lett. 18, 568 (1967)

    Article  ADS  Google Scholar 

  65. Bhaduri, R.K., Losieau, B.A., Nogami, Y.: Ann. Phys. 44, 57 (1967)

    Article  ADS  Google Scholar 

  66. Gal, A., Soper, J.M., Dalitz, R.H.: Ann. Phys. 63, 53 (1971)

    Article  ADS  Google Scholar 

  67. Bodmer, A.R., Usmani, Q.N., Carlson, J.: Phys. Rev. C 29, 684 (1984)

    Article  ADS  Google Scholar 

  68. Yamamoto, Y.: Phys. Rev. C 36, 2166 (1987)

    Article  ADS  Google Scholar 

  69. Vidaña, I., Logoteta, D., Providencia, C., Polls, A., Bombaci, I.: Europhys. Lett. 94, 11002 (2011)

    Article  ADS  Google Scholar 

  70. Yamamoto, Y., Furumoto, T., Yasutake, N., Rijken, Th.: Phys. Rev. C 90, 045805 (2014)

    Article  ADS  Google Scholar 

  71. Lonardoni, D., Lovato, A., Gandolfi, S., Pederiva, F.: Phys. Rev. Lett. 114, 092301 (2015)

    Article  ADS  Google Scholar 

  72. Logoteta, D., Vidaña, I., Bombaci, I.: Eur. Phys. J. A 55, 207 (2019)

    Article  ADS  Google Scholar 

  73. Gerstung, D., Kaiser, N., Weise, W.: Eur. Phys. J. A 56, 175 (2020)

    Article  ADS  Google Scholar 

  74. Ivanenko, D., Kurdgelaidze, D.F.: Lett. Nuovo Cimento 2, 13 (1969)

    Article  ADS  Google Scholar 

  75. Itho, N.: Prog. Teor. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  76. Iachello, F., Langer, W.D., Lande, A.: Nucl. Phys. A 219, 612 (1974)

    Article  ADS  Google Scholar 

  77. Collins, J.C., Perry, M.J.: Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  78. Baym, G., Chin, S.A.: Phys. Lett. B 62, 241 (1976)

    Article  ADS  Google Scholar 

  79. Keister, B.D., Kisslinger, L.S.: Phys. Lett. B 64, 117 (1976)

    Article  ADS  Google Scholar 

  80. Lenzi, C.H., Lugones, G.: Astrophys. J. 759, 57 (2012)

    Article  ADS  Google Scholar 

  81. Bonanno, L., Sedrakian, A.: A&A 539, A16 (2012)

    Article  ADS  Google Scholar 

  82. Orsaria, M., Rodrigues, H., Weber, F., Contrera, G.A.: Phys. Rev. C 89, 015806 (2014)

    Article  ADS  Google Scholar 

  83. Bombaci, I., Logoteta, D.: MNRAS 433, L79 (2013)

    Article  ADS  Google Scholar 

  84. Whittenbury, D.L., Matevosyan, H.H., Thomas, A.W.: Phys. Rev. C 93, 035807 (2016)

    Article  ADS  Google Scholar 

  85. Bodmer, A.R.: Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  86. Terazawa, H.: INS Rep. 336 (Univ. Tokyo, INS) (1979); J. Phys. Soc. Jpn. 58, 3555 (1989); 58, 4388 (1989); 59, 1199 (1990)

    Google Scholar 

  87. Witten, E.: Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  88. Farhi, E., Jaffe, R.L.: Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  89. Madsen, J.: Phys. Rev. D 50, 3328 (1994)

    Article  ADS  Google Scholar 

  90. Mustafa, M.G., Ansari, A.: Phys. Rev. D 53, 5136 (1996)

    Article  ADS  Google Scholar 

  91. Alcock, C., Farhi, E., Olinto, A.: Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  92. Dey, M., Bombaci, I., Dey, J., Ray, S., Samanta, B.C.: Phys. Lett. B 438, 123 (1998); Phys. Lett. B 447, 352 (1999); Phys. Lett. B 467, 303 (1999)

    Google Scholar 

  93. Li, X.-D., Bombaci, I., Dey, M., Dey, J., van den Heuvel, E.P.J.: Phys. Rev. Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

  94. Li, X.-D., Ray, S., Dey, J., Dey, M., Bombaci, I.: Astrophys. J. 527, L51 (1999)

    Article  ADS  Google Scholar 

  95. Xu, R.X., Qiao, G.J., Zhang, B.: Astrophys. J. 522, L109 (1999)

    Article  ADS  Google Scholar 

  96. Casalbuoni, R., Nardulli, G.: Rev. Mod. Phys. 76, 263 (2004)

    Article  ADS  Google Scholar 

  97. Alford, M.G., Schmitt, A., Rajagopal, K., Schafer, T.: Rev. Mod. Phys. 80, 455 (2008).

    Article  ADS  Google Scholar 

  98. Anglani, R., Casalbuoni, R., Ciminale, M., Ippolito, N., Gatto, R., Mannarelli, M., Ruggeri, M.: Rev. Mod. Phys. 86, 509 (2014)

    Article  ADS  Google Scholar 

  99. Buballa, M., Carignano, S.: Progr. Part. Nucl. Phys. 81, 39 (2015)

    Article  ADS  Google Scholar 

  100. Bhattacharyya, S., Bombaci, I., Bandyopadhyay, D., Thampan, A.V., Logoteta, D.: New Astron. 54, 61 (2017)

    Article  ADS  Google Scholar 

  101. Bhattacharyya, S., Bombaci, I., Logoteta, D., Thampan, A.V.: MNRAS 457, 3101 (2016)

    Article  ADS  Google Scholar 

  102. Lindblom, L.: Astrophys. J. 398, 569 (1992)

    Article  ADS  Google Scholar 

  103. Riley, T.E., et al.: MNRAS 478, 1093 (2018)

    Article  ADS  Google Scholar 

  104. Berezhiani, Z., Bombaci, I., Drago, A., Frontera, F., Lavagno, A.: Nucl. Phys. B Proc. Suppl. 113, 268 (2002)

    Article  ADS  Google Scholar 

  105. Berezhiani, Z., Bombaci, I., Drago, A., Frontera, F., Lavagno, A.: Astrophys. J. 586, 1250 (2003)

    Article  ADS  Google Scholar 

  106. Bombaci, I., Parenti, I., Vidaña, I.: Astrophys. J. 614, 314 (2004)

    Article  ADS  Google Scholar 

  107. Drago, A., Lavagno, A., Pagliara, G.: Eur. Phys. J. A 19, 197 (2004)

    Article  ADS  Google Scholar 

  108. Lugones, G., Bombaci, I.: Phys. Rev. D 72, 065021 (2005)

    Article  ADS  Google Scholar 

  109. Drago, A., Lavagno, A., Parenti, I.: Astrophys. J. 659, 1519 (2007)

    Article  ADS  Google Scholar 

  110. Bombaci, I., Lugones, G., Vidaña, I.: A&A 462, 1017 (2007)

    Article  ADS  Google Scholar 

  111. Bombaci, I., Panda, P.K., Providencia, C., Vidaña, I. : Phys. Rev. D 77, 083002 (2008)

    Article  ADS  Google Scholar 

  112. Bombaci, I., Logoteta, D., Panda, P.K., Providencia, C., Vidaña, I.: Phys. Lett. B 680, 448 (2009)

    Article  ADS  Google Scholar 

  113. Bombaci, I., Logoteta, D., Providencia, C., Vidaña, I.: A&A 528, A71 (2011)

    Article  ADS  Google Scholar 

  114. Drago, A., Lavagno, A., Pagliara, G.: Phys. Rev. D 89, 043014 (2014)

    Article  ADS  Google Scholar 

  115. Bombaci, I., Logoteta, D., Vidaña, I., Providencia, C.: Eur. Phys. J. A 52, 58 (2016)

    Article  ADS  Google Scholar 

  116. Drago, A., Lavagno, A., Pagliara, G., Pigato, D.: Eur. Phys. J. A 52, 40 (2016)

    Article  ADS  Google Scholar 

  117. Drago, A., Pagliara, G.: Eur. Phys. J. A 52, 41 (2016)

    Article  ADS  Google Scholar 

  118. Drago, A., Lavagno, A., Metzger, B., Pagliara, G.: Phys. Rev. D 93, 103001 (2016)

    Article  ADS  Google Scholar 

  119. Pili, A.G., Bucciantini, N., Drago, A., Pagliara, G., Del Zanna, L.: MNRAS 462, L26 (2016)

    Article  ADS  Google Scholar 

  120. Bhattacharyya, S., Bombaci, I., Logoteta, D., Thampan, A.V.: Astrophys. J. 848, 65 (2017)

    Article  ADS  Google Scholar 

  121. Drago, A., Pagliara, G.: Phys. Rev. D 102, 063003 (2020)

    Article  ADS  Google Scholar 

  122. Hsu, S.D.H., Schwetz, M.: Phys. Lett. B 432, 203 (1998)

    Article  ADS  Google Scholar 

  123. Fodor, Z., Katz, S.D.: JHEP 04, 050 (2004)

    Article  ADS  Google Scholar 

  124. Bombaci, I., Datta, B.: Astrophys. J. 530, L69 (2000)

    Article  ADS  Google Scholar 

  125. Olesen, M.L.: Madsen, J.: Phys. Rev. D 49, 2698 (1994)

    ADS  Google Scholar 

  126. Hulse, R.A., Taylor, J.H.: Astrophys J. 195, L51 (1975); Weisberg, J.M., Nice, D.J., Taylor, J. H.: Astrophys J. 722, 1030 (2010)

    Google Scholar 

  127. Patruno, A., Haskell, B., Andersson, N.: Astrophys. J. 850, 106 (2017)

    Article  ADS  Google Scholar 

  128. Abbott, R., et al.: Astrophys. J. Lett. 896, L44 (2020)

    Article  ADS  Google Scholar 

  129. Bombaci, I., Drago, A., Logoteta, D., Pagliara, G., Vidaña, I.: Phys. Rev. Lett. 126, 162702 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the editors of the present book, Sudip Bhattacharyya, Alessandro Papitto, and Dipankar Bhattacharya, for inviting me to write this chapter. I dedicate this work to my beloved son, Paride.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Bombaci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bombaci, I. (2022). The Equation of State of Neutron Star Matter. In: Bhattacharyya, S., Papitto, A., Bhattacharya, D. (eds) Millisecond Pulsars. Astrophysics and Space Science Library, vol 465. Springer, Cham. https://doi.org/10.1007/978-3-030-85198-9_9

Download citation

Publish with us

Policies and ethics