Skip to main content

Millisecond Magnetars

  • Chapter
  • First Online:
Millisecond Pulsars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 465))

Abstract

Two classes of X-ray/gamma-ray sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars have been identified with isolated, slowly spinning magnetars, neutron stars whose emission draws energy from their extremely strong magnetic field (∼1015–1016 G). Magnetars are believed to form with millisecond spin period and to represent an important fraction of the whole young neutron star population. Newborn magnetars can convert very quickly their rotational energy into electromagnetic and/or gravitational waves, by virtue of their magnetic field strength and fast spins. This chapter provides a brief summary of astrophysical problems and scenarios in which millisecond magnetars are believed to play a key role: these include Gamma Ray Bursts, Supernovae, Gravitational Wave events and Fast Radio Bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the lower limit of this range see [49].

  2. 2.

    For a basic tutorial see http://solomon.as.utexas.edu/magnetar.html.

  3. 3.

    Note that the virial limit of \({\lesssim } 10^{17}\) G holds for NS interior B-fields (e.g. [171]).

  4. 4.

    This holds when the magnetic dipole is aligned with the spin axis. In general, if they are misaligned by an angle χ, the rhs of Eq. 8.1 must be multiplied by \(\left (1+\sin ^2 \chi \right )\) [185].

  5. 5.

    This holds when the magnetic symmetry axis is orthogonal to the rotation axis. In general, when they are misaligned by a tilt angle χ, the rhs of Eq. 8.3 must be multiplied by \(\left (1+ 15 \sin ^2 \chi \right )/16\).

  6. 6.

    They may release magnetic energy as well, though this channel involves a smaller reservoir and there is no simple prescription for the power that can be liberated; this possibility has been discussed in relation to FRBs and the low-luminosity end of the short-GRB population.

  7. 7.

    We note in passing that the two classical magnetars for which a progenitor mass of ∼(30–45) M has been derived are associated to young open clusters (< 8 Myr) hosting WR stars.

  8. 8.

    During this short time, the enhanced spin down luminosity can be expressed as [137]

    $$\displaystyle \begin{aligned} L_{\mathrm{wind}} = L_{\mathrm{EM}} \left(R_L/R_Y\right)^2 \times {\mathrm{max}}\left[\sigma_0^{-/1/3}, 1\right]\, . \end{aligned} $$
    (8.5)

    Here R L = c∕ Ω is the light cylinder, R Y ≤ R L the equatorial radius of the closed magnetosphere and \(\sigma _0 = \phi ^2 \Omega ^2/(\dot {M} c^3)\) the magnetization parameter of the wind, where \(\dot {M}\) is the neutrino-driven mass loss from the NS surface and ϕ the magnetic flux threading the NS surface and linked to open B-field lines. In the early stages the closed magnetosphere is small, i.e. a large fraction of the NS magnetic flux is linked to open B-field lines, hence R Y ≪ R L. In addition, the neutrino-driven wind is strongest, carrying a sufficiently large mass outflow to ensure a low magnetization (σ 0 ≪ 1): as a result, L wind ≫ L EM. Later, as the mass loss rate drops, σ 0 grows quickly and the wind approaches a force-free condition (σ 0 →) while the closed magnetosphere expands, R Y → R L. Thus L wind → L EM and the classic magneto-dipole spindown kicks in.

  9. 9.

    Secular instabilities arise from the fact that lower-energy states are accessible to the fluid if it can get rid of its excess energy, e.g. via GW-emission or viscosity on timescales ≫ the dynamical time.

  10. 10.

    Indeed, for a constant L = I Ω, the spin energy T = L 2∕2I is minimised by maximising I.

  11. 11.

    At these early times the NS temperature is T ∼ (3–10) × 109 K ([40, 42, 91]), implying the main dissipative term should be bulk viscosity. The latter requires a periodic pressure perturbation in the fluid NS to activate out-of-equilibrium chemical reactions. The precessional motion of the fluid NS provides such a perturbation, the amplitude of which is still debated (e.g. [42, 90, 91]).

  12. 12.

    For this estimate, we adopt a minimum magnetar birth rate of one per 10 CCSNe. .

  13. 13.

    As long as viscosity can be neglected.

  14. 14.

    Λ is the angular frequency of internal motions in the frame co-rotating with the elliptical pattern.

  15. 15.

    Normalized to the spindown power of the Crab pulsar and an acceleration potential φ ∼ 1012 V.

  16. 16.

    Israel et al. [77].

  17. 17.

    NS glitches represent an example of this kind of processes.

  18. 18.

    The same result is obtained using VLA or Green Bank data ([99]).

  19. 19.

    The spectral peak at ν ∼ 10 GHz and the luminosity L ν ∼ 1029 erg s−1 Hz−1 below the peak lead to the conclusion that the energy of the emitting particles peaks at γ e ∼ 102B 1∕2, where B (in gauss) is the magnetic field strength in the emitting region, and that \({\mathcal {N}} B \sim 2 \times 10^{50}\) G ([80]). Moreover, the constraint that the particle cooling break \(\nu _c = 10 e m_e c/\left (\sigma ^2_T B^3 t^2\right )\) be > 10 GHz implies \(B < 0.03 \left (t_{\mathrm {age}}/30~{\mathrm {yr}}\right )^{-2/3} (\nu _{c,9}/10)^{-1/3}\) G, from which \({\mathcal {N}} > 7 \times 10^{51} t^{2/3}_9 (\nu _{c, 9}/10)^{1/3}\) is derived. Particles are accelerated at the NS surface to relativistic energies, giving rise to an electrical current i = μ Ω2c and leading to copious pair-production in the magnetosphere. Pairs are produced at the rate \(\dot {N}^{\pm } \sim 2 {\mathcal {M}} i/e\), where the multiplicity \({\mathcal {M}}\) is the number of e ± pairs per accelerated particle, and typically \({\mathcal {M}} \lesssim 10^3\) in PWNe. Because LEM ∼ i 2c, the NS in FRB121102 should produce pairs with a multiplicity \({\mathcal {M}} \sim 10^7\mbox{--}10^{10}\) in order to inject 1052 particles, given the spindown luminosity ∼1039 erg s−1. This is several orders of magnitude larger than typical in PWNe, pointing to a different mechanism or to very different conditions existing in this source.

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., et al., LIGO Scientific Collaboration, Virgo Collaboration: search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. ApJ 875(2), 160 (2019). https://doi.org/10.3847/1538-4357/ab0f3d

    Article  ADS  Google Scholar 

  2. Abbott, B.P., Abbott, R., Abbott, T.D., et al., LIGO Scientific Collaboration, Virgo Collaboration: GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9(3), 031040 (2019). https://doi.org/10.1103/PhysRevX.9.031040

    Google Scholar 

  3. Ajello, M., Arimoto, M., Axelsson, M., et al.: A decade of gamma-ray bursts observed by Fermi-LAT: the second GRB catalog. ApJ 878(1), 52 (2019). https://doi.org/10.3847/1538-4357/ab1d4e

    Article  ADS  Google Scholar 

  4. Akgün, T., Reisenegger, A., Mastrano, A., Marchant, P.: Stability of magnetic fields in non-barotropic stars: an analytic treatment. MNRAS 433(3), 2445–2466 (2013). https://doi.org/10.1093/mnras/stt913

    Article  ADS  Google Scholar 

  5. Andersson, N., Baker, J., Belczynski, K., et al.: The transient gravitational-wave sky. Classical Quantum Gravity 30(19), 193002 (2013). https://doi.org/10.1088/0264-9381/30/19/193002

    Article  ADS  Google Scholar 

  6. Ascenzi, S., Oganesyan, G., Salafia, O.S., et al.: High latitude emission from structured jet of Gamma-Ray Bursts observed off-axis (2020). arXiv e-prints arXiv:2004.12215

    Google Scholar 

  7. Baiotti, L., Rezzolla, L.: Binary neutron star mergers: a review of Einstein’s richest laboratory. Rep. Progr. Phys. 80(9), 096901 (2017). https://doi.org/10.1088/1361-6633/aa67bb

    Article  MathSciNet  ADS  Google Scholar 

  8. Beloborodov, A.M.: Collisional mechanism for gamma-ray burst emission. MNRAS 407(2), 1033–1047 (2010). https://doi.org/10.1111/j.1365-2966.2010.16770.x

    Article  ADS  Google Scholar 

  9. Beloborodov, A.M.: Blast waves from magnetar flares and fast radio bursts. ApJ 896(2), 142 (2020). https://doi.org/10.3847/1538-4357/ab83eb

    Article  ADS  Google Scholar 

  10. Beniamini, P., Hotokezaka, K., van der Horst, A., Kouveliotou, C.: Formation rates and evolution histories of magnetars. MNRAS 487(1), 1426–1438 (2019). https://doi.org/10.1093/mnras/stz1391

    Article  ADS  Google Scholar 

  11. Bernardini, M.G., Margutti, R., Zaninoni, E., Chincarini, G.: A universal scaling for short and long gamma-ray bursts: EX,iso - Eγ,iso - Epk. MNRAS 425(2), 1199–1204 (2012). https://doi.org/10.1111/j.1365-2966.2012.21487.x

    Article  ADS  Google Scholar 

  12. Bibby, J.L., Crowther, P.A., Furness, J.P., Clark, J.S.: A downward revision to the distance of the 1806-20 cluster and associated magnetar from Gemini Near-Infrared Spectroscopy. MNRAS 386(1), L23–L27 (2008). https://doi.org/10.1111/j.1745-3933.2008.00453.x

    Article  ADS  Google Scholar 

  13. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. MNRAS 179, 433–456 (1977). https://doi.org/10.1093/mnras/179.3.433

    Article  ADS  Google Scholar 

  14. Bochenek, C.D., Ravi, V., Belov, K.V., et al.: A fast radio burst associated with a Galactic magnetar (2020). arXiv e-prints arXiv:2005.10828

    Google Scholar 

  15. Braithwaite, J.: A differential rotation driven dynamo in a stably stratified star. A&A 449(2), 451–460 (2006). https://doi.org/10.1051/0004-6361:20054241

    Article  MATH  ADS  Google Scholar 

  16. Braithwaite, J.: Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components. MNRAS 397(2), 763–774 (2009). https://doi.org/10.1111/j.1365-2966.2008.14034.x

    Article  ADS  Google Scholar 

  17. Bucciantini, N., Quataert, E., Metzger, B.D., et al.: Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae. MNRAS 396(4), 2038–2050 (2009). https://doi.org/10.1111/j.1365-2966.2009.14940.x

    Article  ADS  Google Scholar 

  18. Caleb, M., Keane, E.F., van Straten, W., et al.: The survey for pulsars and extragalactic radio bursts—III. Polarization properties of FRBs 160102 and 151230. MNRAS 478(2), 2046–2055 (2018). https://doi.org/10.1093/mnras/sty1137

  19. Chandrasekhar, S.: Ellipsoidal figures of equilibrium (1969)

    Google Scholar 

  20. Chandrasekhar, S.: The effect of gravitational radiation on the secular stability of the maclaurin spheroid. ApJ 161, 561 (1970). https://doi.org/10.1086/150560

    Article  MathSciNet  ADS  Google Scholar 

  21. Chatterjee, S., Law, C.J., Wharton, R.S., et al.: A direct localization of a fast radio burst and its host. Nature 541(7635), 58–61 (2017). https://doi.org/10.1038/nature20797

    Article  ADS  Google Scholar 

  22. Chen, G., Ravi, V., Lu, W.: The multiwavelength counterparts of fast radio bursts. ApJ 897(2), 146 (2020). https://doi.org/10.3847/1538-4357/ab982b

    Article  ADS  Google Scholar 

  23. Chen, K.J., Woosley, S.E., Whalen, D.J.: Three-dimensional Simulations of Magnetar-powered Superluminous Supernovae. ApJ 893(2), 99 (2020). https://doi.org/10.3847/1538-4357/ab7db0

    Article  ADS  Google Scholar 

  24. Chime/Frb Collaboration, Amiri, M., Andersen, B.C., Band ura, K.M., et al.: Periodic activity from a fast radio burst source. Nature 582(7812), 351–355 (2020). https://doi.org/10.1038/s41586-020-2398-2

  25. CHIME/FRB Collaboration, Andersen, B.C., Bandura, K., Bhardwaj, M., et al.: CHIME/FRB discovery of eight new repeating fast radio burst sources. ApJ 885(1), L24 (2019). https://doi.org/10.3847/2041-8213/ab4a80

  26. Ciolfi, R., Rezzolla, L.: Twisted-torus configurations with large toroidal magnetic fields in relativistic stars. MNRAS 435, L43–L47 (2013). https://doi.org/10.1093/mnrasl/slt092

    Article  ADS  Google Scholar 

  27. Cordes, J.M., Chatterjee, S.: Fast radio bursts: an extragalactic enigma. ARA&A 57, 417–465 (2019). https://doi.org/10.1146/annurev-astro-091918-104501

    Article  ADS  Google Scholar 

  28. Cordes, J.M., Wasserman, I.: Supergiant pulses from extragalactic neutron stars. MNRAS 457(1), 232–257 (2016). https://doi.org/10.1093/mnras/stv2948

    Article  ADS  Google Scholar 

  29. Corsi, A., Mészáros, P.: Gamma-ray burst afterglow plateaus and gravitational waves: multi-messenger signature of a millisecond magnetar? ApJ 702(2), 1171–1178 (2009). https://doi.org/10.1088/0004-637X/702/2/1171

    Article  ADS  Google Scholar 

  30. Crowther, P.A.: Physical properties of wolf-rayet stars. ARA&A 45(1), 177–219 (2007). https://doi.org/10.1146/annurev.astro.45.051806.110615

    Article  ADS  Google Scholar 

  31. Cutler, C.: Gravitational waves from neutron stars with large toroidal B fields. Phys. Rev. D 66(8), 084025 (2002). https://doi.org/10.1103/PhysRevD.66.084025

    Article  ADS  Google Scholar 

  32. Dai, Z.G., Lu, T.: Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars. A&A 333, L87–L90 (1998)

    ADS  Google Scholar 

  33. Daigne, F., Mochkovitch, R.: Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties. MNRAS 296(2), 275–286 (1998). https://doi.org/10.1046/j.1365-8711.1998.01305.x

    Article  ADS  Google Scholar 

  34. Dainotti, M.G., Cardone, V.F., & Capozziello, S.: A time-luminosity correlation for γ-ray bursts in the X-rays. MNRAS 391, L79 (2008). https://doi.org/10.1111/j.1745-3933.2008.00560.x

    Article  ADS  Google Scholar 

  35. Dainotti, M.G., Willingale, R., Capozziello, S., et al.: Discovery of a tight correlation for gamma-ray burst afterglows with “canonical” light curves. ApJ 722, L215 (2010). https://doi.org/10.1088/2041-8205/722/2/L215

    Article  ADS  Google Scholar 

  36. Dainotti, M.G., Ostrowski, M., & Willingale, R.: Towards a standard gamma-ray burst: tight correlations between the prompt and the afterglow plateau phase emission. MNRAS 418, 2202 (2011). https://doi.org/10.1111/j.1365-2966.2011.19433.x

    Article  ADS  Google Scholar 

  37. Dainotti, M.G., Petrosian, V., Singal, J., Ostrowski, M.: Determination of the intrinsic luminosity time correlation in the X-ray afterglows of gamma-ray bursts. ApJ 774(2), 157 (2013). https://doi.org/10.1088/0004-637X/774/2/157

    Article  ADS  Google Scholar 

  38. Dall’Osso, S., Giacomazzo, B., Perna, R., Stella, L.: Gravitational waves from massive magnetars formed in binary neutron star mergers. ApJ 798(1), 25 (2015). https://doi.org/10.1088/0004-637X/798/1/25

    Article  ADS  Google Scholar 

  39. Dall’Osso, S., Granot, J., Piran, T.: Magnetic field decay in neutron stars: from soft gamma repeaters to ‘weak-field magnetars’. MNRAS 422(4), 2878–2903 (2012). https://doi.org/10.1111/j.1365-2966.2012.20612.x

    Article  ADS  Google Scholar 

  40. Dall’Osso, S., Shore, S.N., Stella, L.: Early evolution of newly born magnetars with a strong toroidal field. MNRAS 398(4), 1869–1885 (2009). https://doi.org/10.1111/j.1365-2966.2008.14054.x

    Article  ADS  Google Scholar 

  41. Dall’Osso, S., Stella, L.: Newborn magnetars as sources of gravitational radiation: constraints from high energy observations of magnetar candidates. ApSS 308(1–4), 119–124 (2007). https://doi.org/10.1007/s10509-007-9323-0

    ADS  Google Scholar 

  42. Dall’Osso, S., Stella, L., Palomba, C.: Neutron star bulk viscosity, ‘spin-flip’ and GW emission of newly born magnetars. MNRAS 480(1), 1353–1362 (2018). https://doi.org/10.1093/mnras/sty1706

    Article  ADS  Google Scholar 

  43. Dall’Osso, S., Stratta, G., Guetta, D., et al.: Gamma-ray bursts afterglows with energy injection from a spinning down neutron star. A&A 526, A121 (2011). https://doi.org/10.1051/0004-6361/201014168

    Article  ADS  Google Scholar 

  44. Davies, B., Figer, D.F., Kudritzki, R.P., et al.: The Progenitor Mass of the Magnetar SGR1900+14. ApJ 707(1), 844–851 (2009). https://doi.org/10.1088/0004-637X/707/1/844

    Article  ADS  Google Scholar 

  45. Dessart, L., Hillier, D.J., Waldman, R., et al.: Superluminous supernovae: 56Ni power versus magnetar radiation. MNRAS 426(1), L76–L80 (2012). https://doi.org/10.1111/j.1745-3933.2012.01329.x

    Article  ADS  Google Scholar 

  46. Dimmelmeier, H., Ott, C.D., Marek, A., Janka, H.T.: Gravitational wave burst signal from core collapse of rotating stars. Phys. Rev. D 78(6), 064056 (2008). https://doi.org/10.1103/PhysRevD.78.064056

    Article  ADS  Google Scholar 

  47. Drenkhahn, G., Spruit, H.C.: Efficient acceleration and radiation in Poynting flux powered GRB outflows. A&A 391, 1141–1153 (2002). https://doi.org/10.1051/0004-6361:20020839

    Article  ADS  Google Scholar 

  48. Duncan, R.C., Thompson, C.: Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. ApJ 392, L9 (1992). https://doi.org/10.1086/186413

    Article  ADS  Google Scholar 

  49. Esposito, P., Rea, N., Borghese, A., et al.: A very young radio-loud magnetar. ApJ 896(2), L30 (2020). https://doi.org/10.3847/2041-8213/ab9742

    Article  ADS  Google Scholar 

  50. Esposito, P., Rea, N., Israel, G.L.: Magnetars: a short review and some sparse considerations (2018). arXiv e-prints arXiv:1803.05716

    Google Scholar 

  51. Fan, Y., Piran, T.: Gamma-ray burst efficiency and possible physical processes shaping the early afterglow. MNRAS 369(1), 197–206 (2006). https://doi.org/10.1111/j.1365-2966.2006.10280.x

    Article  ADS  Google Scholar 

  52. Ferrario, L., Melatos, A., Zrake, J.: Magnetic field generation in stars. Space Sci. Rev. 191(1–4), 77–109 (2015). https://doi.org/10.1007/s11214-015-0138-y

    Article  ADS  Google Scholar 

  53. Fonseca, E., Andersen, B.C., Bhardwaj, M., et al.: Nine new repeating fast radio burst sources from CHIME/FRB. ApJ 891(1), L6 (2020). https://doi.org/10.3847/2041-8213/ab7208

    Article  ADS  Google Scholar 

  54. Friedman, J.L., Schutz, B.F.: Secular instability of rotating Newtonian stars. ApJ 222, 281–296 (1978). https://doi.org/10.1086/156143

    Article  ADS  Google Scholar 

  55. Fruchter, A.S., Levan, A.J., Strolger, L., et al.: Long γ-ray bursts and core-collapse supernovae have different environments. Nature 441(7092), 463–468 (2006). https://doi.org/10.1038/nature04787

    Article  ADS  Google Scholar 

  56. Gal-Yam, A.: The most luminous supernovae. ARA&A 57, 305–333 (2019). https://doi.org/10.1146/annurev-astro-081817-051819

    Article  ADS  Google Scholar 

  57. Galama, T.J., Vreeswijk, P.M., van Paradijs, J., et al.: An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395(6703), 670–672 (1998). https://doi.org/10.1038/27150

    Article  ADS  Google Scholar 

  58. Gavriil, F.P., Kaspi, V.M., Woods, P.M.: Magnetar-like X-ray bursts from an anomalous X-ray pulsar. Nature 419(6903), 142–144 (2002). https://doi.org/10.1038/nature01011

    Article  ADS  Google Scholar 

  59. Ghirlanda, G., Ghisellini, G., Celotti, A.: The spectra of short gamma-ray bursts. A&A 422, L55–L58 (2004). https://doi.org/10.1051/0004-6361:20048008

    Article  ADS  Google Scholar 

  60. Ghirlanda, G., Nava, L., Ghisellini, G., et al.: Short versus long gamma-ray bursts: spectra, energetics, and luminosities. A&A 496(3), 585–595 (2009). https://doi.org/10.1051/0004-6361/200811209

    Article  ADS  Google Scholar 

  61. Ghirlanda, G., Salafia, O.S., Paragi, Z., et al.: Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363(6430), 968–971 (2019). https://doi.org/10.1126/science.aau8815

    Article  ADS  Google Scholar 

  62. Ghirlanda, G., Salafia, O.S., Pescalli, A., et al.: Short gamma-ray bursts at the dawn of the gravitational wave era. A&A 594, A84 (2016). https://doi.org/10.1051/0004-6361/201628993

    Article  ADS  Google Scholar 

  63. Giacomazzo, B., Perna, R.: Formation of stable magnetars from binary neutron star mergers. ApJ 771(2), L26 (2013). https://doi.org/10.1088/2041-8205/771/2/L26

    Article  ADS  Google Scholar 

  64. Glampedakis, K., Lasky, P.D.: The freedom to choose neutron star magnetic field equilibria: Table 1. MNRAS 463(3), 2542–2552 (2016). https://doi.org/10.1093/mnras/stw2115

    Article  ADS  Google Scholar 

  65. Goldreich, P., Julian, W.H.: Pulsar electrodynamics. ApJ 157, 869 (1969). https://doi.org/10.1086/150119

    Article  ADS  Google Scholar 

  66. Gompertz, B.P., van der Horst, A.J., O’Brien, P.T., et al.: Broad-band modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability. MNRAS 448(1), 629–641 (2015). https://doi.org/10.1093/mnras/stu2752

    Article  ADS  Google Scholar 

  67. Goodman, J.: Are gamma-ray bursts optically thick? ApJ 308, L47 (1986). https://doi.org/10.1086/184741

    Article  ADS  Google Scholar 

  68. Gourdji, K., Rowlinson, A., Wijers, R.A.M.J., Goldstein, A.: Constraining a neutron star merger origin for localized fast radio bursts. MNRAS 497(3), 3131–3141 (2020). https://doi.org/10.1093/mnras/staa2128

    Article  ADS  Google Scholar 

  69. Guiriec, S., Daigne, F., Hascoët, R., et al.: Evidence for a photospheric component in the prompt emission of the short GRB 120323A and its effects on the GRB hardness-luminosity relation. ApJ 770(1), 32 (2013). https://doi.org/10.1088/0004-637X/770/1/32

    Article  ADS  Google Scholar 

  70. Haskell, B., Samuelsson, L., Glampedakis, K., Andersson, N.: Modelling magnetically deformed neutron stars. MNRAS 385(1), 531–542 (2008). https://doi.org/10.1111/j.1365-2966.2008.12861.x

    Article  ADS  Google Scholar 

  71. Hessels, J.W.T.: Fast radio bursts and their possible neutron star origins (2018). arXiv e-prints arXiv:1804.06149

    Google Scholar 

  72. Hinderer, T., Rezzolla, L., Baiotti, L.: Gravitational waves from merging binary neutron-star systems. Astrophys. Space Sci. Lib. 457, 575 (2018). https://doi.org/10.1007/978-3-319-97616-7-10

    Article  ADS  Google Scholar 

  73. Hjorth, J., Sollerman, J., Møller, P., et al.: A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423(6942), 847–850 (2003). https://doi.org/10.1038/nature01750

    Article  ADS  Google Scholar 

  74. Inserra, C.: Observational properties of extreme supernovae. Nat. Astron. 3, 697–705 (2019). https://doi.org/10.1038/s41550-019-0854-4

    Article  ADS  Google Scholar 

  75. Inserra, C., Smartt, S.J., Jerkstrand, A., et al.: Super-luminous type Ic supernovae: catching a magnetar by the tail. ApJ 770(2), 128 (2013). https://doi.org/10.1088/0004-637X/770/2/128

    Article  ADS  Google Scholar 

  76. Jones, P.B.: The secular variation of pulsar magnetic dipole moments. ApSS 45(2), 369–381 (1976). https://doi.org/10.1007/BF00642671

    ADS  Google Scholar 

  77. Israel, G.L., Burgay, M., Rea, N., Esposito, P., Possenti, A., Dall’Osso, S., Stella, L., Pilia, M., Tiengo, A., Ridnaia, A., Lien A.Y., Frederiks, D.D., Bernardini, F.: X-ray and radio bursts from the magnetar 1E 1547.0-5408. ApJ 907(1), id.7 (2021). https://doi.org/10.3847/1538-4357/abca95

  78. Kasen, D., Bildsten, L.: Supernova light curves powered by Young magnetars. ApJ 717(1), 245–249 (2010). https://doi.org/10.1088/0004-637X/717/1/245

    Article  ADS  Google Scholar 

  79. Kasen, D., Metzger, B.D., Bildsten, L.: Magnetar-driven shock breakout and double-peaked supernova light curves. ApJ 821(1), 36 (2016). https://doi.org/10.3847/0004-637X/821/1/36

    Article  ADS  Google Scholar 

  80. Kaspi, V.M., Beloborodov, A.M.: Magnetars. ARA&A 55(1), 261–301 (2017). https://doi.org/10.1146/annurev-astro-081915-023329

    Article  ADS  Google Scholar 

  81. Katz, J.I.: How soft gamma repeaters might make fast radio bursts. ApJ 826(2), 226 (2016). https://doi.org/10.3847/0004-637X/826/2/226

    Article  ADS  Google Scholar 

  82. Katz, J.I.: Fast radio bursts. Progr. Part. Nucl. Phys. 103, 1–18 (2018). https://doi.org/10.1016/j.ppnp.2018.07.001

    Article  ADS  Google Scholar 

  83. Kouveliotou, C., Dieters, S., Strohmayer, T., et al.: An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806-20. Nature 393(6682), 235–237 (1998). https://doi.org/10.1038/30410

    Article  ADS  Google Scholar 

  84. Kouveliotou, C., Meegan, C.A., Fishman, G.J., et al.: Identification of two classes of gamma-ray bursts. ApJ 413, L101 (1993). https://doi.org/10.1086/186969

    Article  ADS  Google Scholar 

  85. Kouveliotou, C., Norris, J.P., Cline, T.L., et al.: SMM hard X-ray observations of the soft gamma-ray repeater 1806-20. ApJ 322, L21 (1987). https://doi.org/10.1086/185029

    Article  ADS  Google Scholar 

  86. Kulkarni, S.R., Ofek, E.O., Neill, J.D.: The arecibo fast radio burst: dense circum-burst medium (2015). arXiv e-prints arXiv:1511.09137

    Google Scholar 

  87. Kumar, P., Narayan, R., Johnson, J.L.: Properties of gamma-ray burst progenitor stars. Science 321(5887), 376 (2008). https://doi.org/10.1126/science.1159003

    Article  ADS  Google Scholar 

  88. Kumar, P., Zhang, B.: The physics of gamma-ray bursts and relativistic jets. PhR 561, 1–109 (2015). https://doi.org/10.1016/j.physrep.2014.09.008

    ADS  Google Scholar 

  89. Lai, D., Shapiro, S.L.: Gravitational radiation from rapidly rotating nascent neutron stars. ApJ 442, 259 (1995). https://doi.org/10.1086/175438

    Article  ADS  Google Scholar 

  90. Lander, S.K., Jones, D.I.: Non-rigid precession of magnetic stars. MNRAS 467(4), 4343–4382 (2017). https://doi.org/10.1093/mnras/stx349

    Article  ADS  Google Scholar 

  91. Lander, S.K., Jones, D.I.: Magnetar birth: rotation rates and gravitational-wave emission. MNRAS 494(4), 4838–4847 (2020). https://doi.org/10.1093/mnras/staa966

    Article  ADS  Google Scholar 

  92. Levin, Y., Beloborodov, A.M., Bransgrove, A.: Precessing flaring magnetar as a source of repeating FRB 180916.J0158+65. ApJ 895(2), L30 (2020). https://doi.org/10.3847/2041-8213/ab8c4c

  93. Li, L., Wu, X.F., Lei, W.H., et al.: Constraining the type of central engine of GRBs with swift data. ApJS 236(2), 26 (2018). https://doi.org/10.3847/1538-4365/aabaf3

    Article  ADS  Google Scholar 

  94. Li, W., Chornock, R., Leaman, J., et al.: Nearby supernova rates from the Lick Observatory Supernova Search—III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. MNRAS 412(3), 1473–1507 (2011). https://doi.org/10.1111/j.1365-2966.2011.18162.x

  95. Liang, E.W., Zhang, B.B., Zhang, B.: A comprehensive analysis of swift XRT data. II. Diverse physical origins of the shallow decay segment. ApJ 670(1), 565–583 (2007). https://doi.org/10.1086/521870

    Google Scholar 

  96. LIGO Scientific Collaboration, Virgo Collaboration, Fermi gamma-ray burst monitor, INTEGRAL: gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. ApJ 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

  97. Lorimer, D.R., Bailes, M., McLaughlin, M.A., et al.: A bright millisecond radio burst of extragalactic origin. Science 318(5851), 777 (2007). https://doi.org/10.1126/science.1147532

    Article  ADS  Google Scholar 

  98. Lu, W., Kumar, P.: A universal EDF for repeating fast radio bursts? MNRAS 461(1), L122–L126 (2016). https://doi.org/10.1093/mnrasl/slw113

    Article  ADS  Google Scholar 

  99. Lu, W., Kumar, P.: On the radiation mechanism of repeating fast radio bursts. MNRAS 477(2), 2470–2493 (2018). https://doi.org/10.1093/mnras/sty716

    Article  ADS  Google Scholar 

  100. Lu, W., Kumar, P., Narayan, R.: Fast radio burst source properties from polarization measurements. MNRAS 483(1), 359–369 (2019). https://doi.org/10.1093/mnras/sty2829

    Article  ADS  Google Scholar 

  101. Lyons, N., O’Brien, P.T., Zhang, B., et al.: Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? MNRAS 402(2), 705–712 (2010). https://doi.org/10.1111/j.1365-2966.2009.15538.x

    Article  ADS  Google Scholar 

  102. Lyubarsky, Y.: A model for fast extragalactic radio bursts. MNRAS 442, L9–L13 (2014). https://doi.org/10.1093/mnrasl/slu046

    Article  ADS  Google Scholar 

  103. Lyutikov, M.: Explosive reconnection in magnetars. MNRAS 346(2), 540–554 (2003). https://doi.org/10.1046/j.1365-2966.2003.07110.x

    Article  ADS  Google Scholar 

  104. Lyutikov, M.: Free electron laser in magnetars/fast radio bursts (2020). arXiv e-prints arXiv:2006.16029

    Google Scholar 

  105. Lyutikov, M.: Radius-to-frequency mapping and FRB frequency drifts. ApJ 889(2), 135 (2020). https://doi.org/10.3847/1538-4357/ab55de

    Article  ADS  Google Scholar 

  106. Lyutikov, M., Burzawa, L., Popov, S.B.: Fast radio bursts as giant pulses from young rapidly rotating pulsars. MNRAS 462(1), 941–950 (2016). https://doi.org/10.1093/mnras/stw1669

    Article  ADS  Google Scholar 

  107. Lyutikov, M., Pariev, V.I., Blandford, R.D.: Polarization of prompt gamma-ray burst emission: evidence for electromagnetically dominated outflow. ApJ 597(2), 998–1009 (2003). https://doi.org/10.1086/378497

    Article  ADS  Google Scholar 

  108. Lyutikov, M., Popov, S.: Fast Radio Bursts from reconnection events in magnetar magnetospheres (2020). arXiv e-prints arXiv:2005.05093

    Google Scholar 

  109. MacDonald, D., Thorne, K.S.: Black-hole electrodynamics—an absolute-space/universal-time formulation. MNRAS 198, 345–382 (1982). https://doi.org/10.1093/mnras/198.2.345

    Article  MathSciNet  MATH  ADS  Google Scholar 

  110. MacFadyen, A.I., Woosley, S.E.: Collapsars: gamma-ray bursts and explosions in “failed supernovae”. ApJ 524(1), 262–289 (1999). https://doi.org/10.1086/307790

    Article  ADS  Google Scholar 

  111. Madau, P., Dickinson, M.: Cosmic star-formation history. ARA&A 52, 415–486 (2014). https://doi.org/10.1146/annurev-astro-081811-125615

    Article  ADS  Google Scholar 

  112. Maeda, K., Tanaka, M., Nomoto, K., et al.: The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. ApJ 666(2), 1069–1082 (2007). https://doi.org/10.1086/520054

    Article  ADS  Google Scholar 

  113. Makishima, K., Enoto, T., Hiraga, J.S., et al.: Possible evidence for free precession of a strongly magnetized neutron star in the magnetar 4U 0142+61. Phys. Rev. Lett. 112(17), 171102 (2014). https://doi.org/10.1103/PhysRevLett.112.171102

    Article  ADS  Google Scholar 

  114. Marcote, B., Nimmo, K., Hessels, J.W.T., et al.: A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 577(7789), 190–194 (2020). https://doi.org/10.1038/s41586-019-1866-z

    Article  ADS  Google Scholar 

  115. Margalit, B., Beniamini, P., Sridhar, N., Metzger, B.D.: Implications of a “fast radio burst” from a Galactic magnetar (2020). arXiv e-prints arXiv:2005.05283

    Google Scholar 

  116. Margalit, B., Metzger, B.D.: Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817. ApJ 850(2), L19 (2017). https://doi.org/10.3847/2041-8213/aa991c

    Article  ADS  Google Scholar 

  117. Margalit, B., Metzger, B.D.: A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion-electron wind nebula. ApJ 868(1), L4 (2018). https://doi.org/10.3847/2041-8213/aaedad

    Article  ADS  Google Scholar 

  118. Margalit, B., Metzger, B.D., Berger, E., et al.: Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. MNRAS 481(2), 2407–2426 (2018). https://doi.org/10.1093/mnras/sty2417

    Article  ADS  Google Scholar 

  119. Margalit, B., Metzger, B.D., Sironi, L.: Constraints on the engines of fast radio bursts. MNRAS 494(4), 4627–4644 (2020). https://doi.org/10.1093/mnras/staa1036

    Article  ADS  Google Scholar 

  120. Margutti, R., Alexander, K.D., Xie, X., et al.: The binary neutron star event LIGO/Virgo GW170817 160 days after merger: synchrotron emission across the electromagnetic spectrum. ApJ 856(1), L18 (2018). https://doi.org/10.3847/2041-8213/aab2ad

    Article  ADS  Google Scholar 

  121. Martin, J., Rea, N., Torres, D.F., Papitto, A.: Comparing supernova remnants around strongly magnetized and canonical pulsars. MNRAS 444(3), 2910–2924 (2014). https://doi.org/10.1093/mnras/stu1594

    Article  ADS  Google Scholar 

  122. Mastrano, A., Lasky, P.D., Melatos, A.: Neutron star deformation due to multipolar magnetic fields. MNRAS 434(2), 1658–1667 (2013). https://doi.org/10.1093/mnras/stt1131

    Article  ADS  Google Scholar 

  123. Mastrano, A., Melatos, A., Reisenegger, A., Akgün, T.: Gravitational wave emission from a magnetically deformed non-barotropic neutron star. MNRAS 417(3), 2288–2299 (2011). https://doi.org/10.1111/j.1365-2966.2011.19410.x

    Article  ADS  Google Scholar 

  124. Masui, K., Lin, H.H., Sievers, J., et al.: Dense magnetized plasma associated with a fast radio burst. Nature 528(7583), 523–525 (2015). https://doi.org/10.1038/nature15769

    Article  ADS  Google Scholar 

  125. Matzner, C.D.: Supernova hosts for gamma-ray burst jets: dynamical constraints. MNRAS 345(2), 575–589 (2003). https://doi.org/10.1046/j.1365-8711.2003.06969.x

    Article  ADS  Google Scholar 

  126. Mazets, E.P., Golentskii, S.V., Ilinskii, V.N., et al.: Observations of a flaring X-ray pulsar in Dorado. Nature 282(5739), 587–589 (1979). https://doi.org/10.1038/282587a0

    Article  ADS  Google Scholar 

  127. Mereghetti, S.: The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. A&AR 15(4), 225–287 (2008). https://doi.org/10.1007/s00159-008-0011-z

    Article  MathSciNet  ADS  Google Scholar 

  128. Mereghetti, S., Pons, J.A., Melatos, A.: Magnetars: properties, origin and evolution. Space Sci. Rev. 191(1-4), 315–338 (2015). https://doi.org/10.1007/s11214-015-0146-y

    Article  ADS  Google Scholar 

  129. Mereghetti, S., Savchenko, V., Ferrigno, C., et al.: INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154 (2020). arXiv e-prints arXiv:2005.06335

    Google Scholar 

  130. Mereghetti, S., Stella, L.: The very low mass x-ray binary pulsars: a new class of sources? ApJ 442, L17 (1995). https://doi.org/10.1086/187805

    Article  ADS  Google Scholar 

  131. Mestel, L., Takhar, H.S.: The internal dynamics of the oblique rotator. MNRAS 156, 419 (1972). https://doi.org/10.1093/mnras/156.4.419

    Article  ADS  Google Scholar 

  132. Meszaros, P., Rees, M.J.: Relativistic fireballs and their impact on external matter: models for cosmological gamma-ray bursts. ApJ 405, 278 (1993). https://doi.org/10.1086/172360

    Article  ADS  Google Scholar 

  133. Mészáros, P., Rees, M.J.: Optical and long-wavelength afterglow from gamma-ray bursts. ApJ 476(1), 232–237 (1997). https://doi.org/10.1086/303625

    Article  ADS  Google Scholar 

  134. Mészáros, P., Rees, M.J.: Collapsar jets, bubbles, and Fe lines. ApJ 556(1), L37–L40 (2001). https://doi.org/10.1086/322934

    Article  ADS  Google Scholar 

  135. Metzger, B.D., Beniamini, P., Giannios, D.: Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae. ApJ 857(2), 95 (2018). https://doi.org/10.3847/1538-4357/aab70c

    Article  ADS  Google Scholar 

  136. Metzger, B.D., Berger, E., Margalit, B.: Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. ApJ 841(1), 14 (2017). https://doi.org/10.3847/1538-4357/aa633d

    Article  ADS  Google Scholar 

  137. Metzger, B.D., Giannios, D., Thompson, T.A., et al.: The protomagnetar model for gamma-ray bursts. MNRAS 413(3), 2031–2056 (2011). https://doi.org/10.1111/j.1365-2966.2011.18280.x

    Article  ADS  Google Scholar 

  138. Metzger, B.D., Margalit, B., Sironi, L.: Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. MNRAS 485(3), 4091–4106 (2019). https://doi.org/10.1093/mnras/stz700

    Article  ADS  Google Scholar 

  139. Metzger, B.D., Piro, A.L.: Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars. MNRAS 439(4), 3916–3930 (2014). https://doi.org/10.1093/mnras/stu247

    Article  ADS  Google Scholar 

  140. Metzger, B.D., Quataert, E., Thompson, T.A.: Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. MNRAS 385(3), 1455–1460 (2008). https://doi.org/10.1111/j.1365-2966.2008.12923.x

    Article  ADS  Google Scholar 

  141. Michilli, D., Seymour, A., Hessels, J.W.T., et al.: An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553(7687), 182–185 (2018). https://doi.org/10.1038/nature25149

    Article  ADS  Google Scholar 

  142. Mooley, K.P., Deller, A.T., Gottlieb, O., et al.: Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561(7723), 355–359 (2018). https://doi.org/10.1038/s41586-018-0486-3

    Article  ADS  Google Scholar 

  143. Mooley, K.P., Frail, D.A., Dobie, D., et al.: A strong jet signature in the late-time light curve of GW170817. ApJ 868(1), L11 (2018). https://doi.org/10.3847/2041-8213/aaeda7

    Article  ADS  Google Scholar 

  144. Muno, M., Clark, J., Crowther, P., et al.: A neutron star with a massive progenitor in westerlund 1. Astrophys. J. Lett. 636(1), L41–L44 (2006). https://doi.org/10.1086/499776

    Article  ADS  Google Scholar 

  145. Narayan, R., Piran, T., Kumar, P.: Accretion models of gamma-ray bursts. ApJ 557(2), 949–957 (2001). https://doi.org/10.1086/322267

    Article  ADS  Google Scholar 

  146. Nicholl, M., Guillochon, J., Berger, E.: The magnetar model for type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. ApJ 850(1), 55 (2017). https://doi.org/10.3847/1538-4357/aa9334

    Google Scholar 

  147. Nousek, J.A., Kouveliotou, C., Grupe, D., et al.: Evidence for a canonical gamma-ray burst afterglow light curve in the swift XRT data. ApJ 642(1), 389–400 (2006). https://doi.org/10.1086/500724

    Article  ADS  Google Scholar 

  148. Obergaulinger, M., Aloy, M.Á.: Evolution of the surface magnetic field of rotating proto-neutron stars. In: Journal of Physics Conference Series, Journal of Physics Conference Series, vol. 932, p. 012043 (2017). https://doi.org/10.1088/1742-6596/932/1/012043

    Google Scholar 

  149. Oganesyan, G., Ascenzi, S., Branchesi, M., et al.: Structured jets and X-ray plateaus in gamma-ray burst phenomena. ApJ 893(2), 88 (2020). https://doi.org/10.3847/1538-4357/ab8221

    Article  ADS  Google Scholar 

  150. Oppermann, N., Yu, H.R., Pen, U.L.: On the non-Poissonian repetition pattern of FRB121102. MNRAS 475(4), 5109–5115 (2018). https://doi.org/10.1093/mnras/sty004

    Article  ADS  Google Scholar 

  151. Orellana, M., Bersten, M.C., Moriya, T.J.: Systematic study of magnetar-powered hydrogen-rich supernovae. A&A 619, A145 (2018). https://doi.org/10.1051/0004-6361/201832661

    Article  ADS  Google Scholar 

  152. Ostriker, J.P., Gunn, J.E.: On the nature of pulsars. I. Theory. ApJ 157, 1395 (1969). https://doi.org/10.1086/150160

    Google Scholar 

  153. Paczynski, B.: Gamma-ray bursters at cosmological distances. ApJ 308, L43–L46 (1986). https://doi.org/10.1086/184740

    Article  ADS  Google Scholar 

  154. Paczynski, B., Rhoads, J.E.: Radio transients from gamma-ray bursters. ApJ 418, L5 (1993). https://doi.org/10.1086/187102

    Article  ADS  Google Scholar 

  155. Panaitescu, A., Mészáros, P., Burrows, D., et al.: Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications. MNRAS 369(4), 2059–2064 (2006). https://doi.org/10.1111/j.1365-2966.2006.10453.x

    Article  ADS  Google Scholar 

  156. Petroff, E., Burke-Spolaor, S., Keane, E.F., et al.: A polarized fast radio burst at low Galactic latitude. MNRAS 469(4), 4465–4482 (2017). https://doi.org/10.1093/mnras/stx1098

    ADS  Google Scholar 

  157. Petroff, E., Hessels, J.W.T., Lorimer, D.R.: Fast radio bursts. A&AR 27(1), 4 (2019). https://doi.org/10.1007/s00159-019-0116-6

    Article  ADS  Google Scholar 

  158. Piran, T., Shemi, A., Narayan, R.: Hydrodynamics of relativistic fireballs. MNRAS 263, 861 (1993). https://doi.org/10.1093/mnras/263.4.861

    Article  ADS  Google Scholar 

  159. Piro, A.L.: The impact of a supernova remnant on fast radio bursts. ApJ 824(2), L32 (2016). https://doi.org/10.3847/2041-8205/824/2/L32

    Article  ADS  Google Scholar 

  160. Piro, A.L., Giacomazzo, B., Perna, R.: The fate of neutron star binary mergers. ApJ 844(2), L19 (2017). https://doi.org/10.3847/2041-8213/aa7f2f

    Article  ADS  Google Scholar 

  161. Piro, A.L., Ott, C.D.: Supernova fallback onto magnetars and propeller-powered supernovae. ApJ 736(2), 108 (2011). https://doi.org/10.1088/0004-637X/736/2/108

    Article  ADS  Google Scholar 

  162. Platts, E., Weltman, A., Walters, A., et al.: A living theory catalogue for fast radio bursts. PhR 821, 1–27 (2019). https://doi.org/10.1016/j.physrep.2019.06.003

    MathSciNet  ADS  Google Scholar 

  163. Pons, J.A., Perna, R.: Magnetars versus high magnetic field pulsars: a theoretical interpretation of the apparent dichotomy. ApJ 741(2), 123 (2011). https://doi.org/10.1088/0004-637X/741/2/123

    Article  ADS  Google Scholar 

  164. Popham, R., Woosley, S.E., Fryer, C.: Hyperaccreting black holes and gamma-ray bursts. ApJ 518(1), 356–374 (1999). https://doi.org/10.1086/307259

    Article  ADS  Google Scholar 

  165. Rane, A., Lorimer, D.: Fast radio bursts. J. Astrophys. Astron. 38(3), 55 (2017). https://doi.org/10.1007/s12036-017-9478-1

    Article  ADS  Google Scholar 

  166. Raynaud, R., Guilet, J., Janka, H.T., Gastine, T.: Magnetar formation through a convective dynamo in protoneutron stars. Sci. Adv. 6(11), eaay2732 (2020). https://doi.org/10.1126/sciadv.aay2732

  167. Rea, N., Esposito, P.: Magnetar outbursts: an observational review. Astrophys. Space Sci. Proc. 21, 247 (2011). https://doi.org/10.1007/978-3-642-17251-9_21

    Article  ADS  Google Scholar 

  168. Rea, N., Esposito, P., Turolla, R., et al.: A low-magnetic-field soft gamma repeater. Science 330(6006), 944 (2010). https://doi.org/10.1126/science.1196088

    Article  ADS  Google Scholar 

  169. Rea, N., Israel, G.L., Esposito, P., et al.: A new low magnetic field magnetar: the 2011 outburst of swift J1822.3-1606. ApJ 754(1), 27 (2012). https://doi.org/10.1088/0004-637X/754/1/27

  170. Rees, M.J., Meszaros, P.: Unsteady outflow models for cosmological gamma-ray bursts. ApJ 430, L93 (1994). https://doi.org/10.1086/187446

    Article  ADS  Google Scholar 

  171. Reisenegger, A.: Stable magnetic equilibria and their evolution in the upper main sequence, white dwarfs, and neutron stars. A&A 499(2), 557–566 (2009). https://doi.org/10.1051/0004-6361/200810895

    Article  ADS  Google Scholar 

  172. Rodríguez Castillo, G.A., Israel, G.L., Tiengo, A., et al.: The outburst decay of the low magnetic field magnetar SWIFT J1822.3-1606: phase-resolved analysis and evidence for a variable cyclotron feature. MNRAS 456(4), 4145–4155 (2016). https://doi.org/10.1093/mnras/stv2490

  173. Rossi, E., Lazzati, D., Rees, M.J.: Afterglow light curves, viewing angle and the jet structure of γ-ray bursts. MNRAS 332(4), 945–950 (2002). https://doi.org/10.1046/j.1365-8711.2002.05363.x

    Article  ADS  Google Scholar 

  174. Rowlinson, A., O’Brien, P.T., Metzger, B.D., et al.: Signatures of magnetar central engines in short GRB light curves. MNRAS 430(2), 1061–1087 (2013). https://doi.org/10.1093/mnras/sts683

    Article  ADS  Google Scholar 

  175. Ryde, F.: Is thermal emission in gamma-ray bursts ubiquitous? ApJ 625(2), L95–L98 (2005). https://doi.org/10.1086/431239

    Article  ADS  Google Scholar 

  176. Sari, R., Piran, T., Narayan, R.: Spectra and light curves of gamma-ray burst afterglows. ApJ 497(1), L17–L20 (1998). https://doi.org/10.1086/311269

    Article  ADS  Google Scholar 

  177. Sarin, N., Lasky, P.D., Ashton, G.: X-ray afterglows of short gamma-ray bursts: magnetar or fireball? ApJ 872(1), 114 (2019). https://doi.org/10.3847/1538-4357/aaf9a0

    Article  ADS  Google Scholar 

  178. Sathyaprakash, B.S., Schutz, B.F.: Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12(1), 2 (2009). https://doi.org/10.12942/lrr-2009-2

    Article  MATH  ADS  Google Scholar 

  179. Scholz, P., Spitler, L.G., Hessels, J.W.T., et al.: The repeating fast radio burst FRB 121102: multi-wavelength observations and additional bursts. ApJ 833(2), 177 (2016). https://doi.org/10.3847/1538-4357/833/2/177

    Article  ADS  Google Scholar 

  180. Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. Wiley, London (1983)

    Book  Google Scholar 

  181. Shemi, A., Piran, T.: The appearance of cosmic fireballs. ApJ 365, L55 (1990). https://doi.org/10.1086/185887

    Article  ADS  Google Scholar 

  182. Shibata, M., Fujibayashi, S., Hotokezaka, K., et al.: Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D 96(12), 123012 (2017). https://doi.org/10.1103/PhysRevD.96.123012

    Article  ADS  Google Scholar 

  183. Shibata, M., Sekiguchi, Y.I.: Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities. Phys. Rev. D 71(2), 024014 (2005). https://doi.org/10.1103/PhysRevD.71.024014

    Article  ADS  Google Scholar 

  184. Siegel, D.M., Ciolfi, R.: Electromagnetic emission from long-lived binary neutron star merger remnants. I. Formulation of the problem. ApJ 819(1), 14 (2016). https://doi.org/10.3847/0004-637X/819/1/14

    Google Scholar 

  185. Spitkovsky, A.: Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. ApJ 648(1), L51–L54 (2006). https://doi.org/10.1086/507518

    Article  ADS  Google Scholar 

  186. Spitler, L.G., Cordes, J.M., Hessels, J.W.T., et al.: Fast radio burst discovered in the arecibo pulsar ALFA survey. ApJ 790(2), 101 (2014). https://doi.org/10.1088/0004-637X/790/2/101

    Article  ADS  Google Scholar 

  187. Spitler, L.G., Scholz, P., Hessels, J.W.T., et al.: A repeating fast radio burst. Nature 531(7593), 202–205 (2016). https://doi.org/10.1038/nature17168

    Article  ADS  Google Scholar 

  188. Spruit, H.C.: The source of magnetic fields in (neutron-) stars. In: Strassmeier, K.G., Kosovichev, A.G., Beckman, J.E. (eds.) Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, IAU Symposium, vol. 259, pp. 61–74 (2009). https://doi.org/10.1017/S1743921309030075

    ADS  Google Scholar 

  189. Stella, L., Dall’Osso, S., Israel, G.L., Vecchio, A.: Gravitational radiation from newborn magnetars in the Virgo cluster. ApJ 634(2), L165–L168 (2005). https://doi.org/10.1086/498685

    Article  ADS  Google Scholar 

  190. Stratta, G., Dainotti, M.G., Dall’Osso, S., et al.: On the magnetar origin of the GRBs presenting X-ray afterglow plateaus. ApJ 869(2), 155 (2018). https://doi.org/10.3847/1538-4357/aadd8f

    Article  ADS  Google Scholar 

  191. Suvorov, A.G., Kokkotas, K.D.: Evidence for Magnetar Precession in X-Ray Afterglows of Gamma-Ray Bursts. Astrophys. J. Lett. 892(2), L34 (2020). https://doi.org/10.3847/2041-8213/ab8296

    Article  ADS  Google Scholar 

  192. Tchekhovskoy, A.: Simulations of jet formation by accreting black holes. In: American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts, p. 223.04 (2020)

    Google Scholar 

  193. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS 418(1), L79–L83 (2011). https://doi.org/10.1111/j.1745-3933.2011.01147.x

    Article  ADS  Google Scholar 

  194. The CHIME/FRB Collaboration, :, Andersen, B.C., Band ura, K.M., Bhardwaj, M., et al.: A bright millisecond-duration radio burst from a Galactic magnetar (2020). arXiv e-prints arXiv:2005.10324

    Google Scholar 

  195. Thompson, C., Duncan, R.C.: Neutron star dynamos and the origins of pulsar magnetism. ApJ 408, 194 (1993). https://doi.org/10.1086/172580

    Article  ADS  Google Scholar 

  196. Thompson, C., Duncan, R.C.: The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. MNRAS 275(2), 255–300 (1995). https://doi.org/10.1093/mnras/275.2.255

    Google Scholar 

  197. Thompson, C., Duncan, R.C.: The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and alfven wave emission. ApJ 473, 322 (1996). https://doi.org/10.1086/178147

  198. Thompson, C., Duncan, R.C.: The giant flare of 1998 August 27 from SGR 1900+14. II. Radiative mechanism and physical constraints on the source. ApJ 561(2), 980–1005 (2001). https://doi.org/10.1086/323256

    Google Scholar 

  199. Tiengo, A., Esposito, P., Mereghetti, S., et al.: A variable absorption feature in the X-ray spectrum of a magnetar. Nature 500(7462), 312–314 (2013). https://doi.org/10.1038/nature12386

    Article  ADS  Google Scholar 

  200. Troja, E., Piro, L., Ryan, G., et al.: The outflow structure of GW170817 from late-time broad-band observations. MNRAS 478(1), L18–L23 (2018). https://doi.org/10.1093/mnrasl/sly061

    Article  ADS  Google Scholar 

  201. Truemper, J., Pietsch, W., Reppin, C., et al.: Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. ApJ 219, L105–L110 (1978). https://doi.org/10.1086/182617

    Article  ADS  Google Scholar 

  202. Turolla, R., Zane, S., Pons, J.A., et al.: Is SGR 0418+5729 indeed a waning magnetar? ApJ 740(2), 105 (2011). https://doi.org/10.1088/0004-637X/740/2/105

    Article  ADS  Google Scholar 

  203. Turolla, R., Zane, S., Watts, A.L.: Magnetars: the physics behind observations. A review. Rep. Progr. Phys. 78(11), 116901 (2015). https://doi.org/10.1088/0034-4885/78/11/116901

    Article  ADS  Google Scholar 

  204. Usov, V.V.: Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 357(6378), 472–474 (1992). https://doi.org/10.1038/357472a0

    Article  ADS  Google Scholar 

  205. van Paradijs, J., Taam, R.E., van den Heuvel, E.P.J.: On the nature of the ‘anomalous’ 6-s X-ray pulsars. A&A 299, L41 (1995)

    ADS  Google Scholar 

  206. Vietri, M., Stella, L., Israel, G.L.: SGR 1806-20: evidence for a superstrong magnetic field from quasi-periodic oscillations. ApJ 661(2), 1089–1093 (2007). https://doi.org/10.1086/517506

    Article  ADS  Google Scholar 

  207. Vink, J., Kuiper, L.: Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars. MNRAS 370(1), L14–L18 (2006). https://doi.org/10.1111/j.1745-3933.2006.00178.x

    Article  ADS  Google Scholar 

  208. Vurm, I., Lyubarsky, Y., Piran, T.: On thermalization in gamma-ray burst jets and the peak energies of photospheric spectra. ApJ 764(2), 143 (2013). https://doi.org/10.1088/0004-637X/764/2/143

    Article  ADS  Google Scholar 

  209. Wanderman, D., Piran, T.: The rate, luminosity function and time delay of non-Collapsar short GRBs. MNRAS 448(4), 3026–3037 (2015). https://doi.org/10.1093/mnras/stv123

    Article  ADS  Google Scholar 

  210. Woltjer, L.: X-rays and type I supernova remnants. ApJ 140, 1309–1313 (1964). https://doi.org/10.1086/148028

    Article  MathSciNet  ADS  Google Scholar 

  211. Woods, P.M., Thompson, C.: Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates, vol. 39, pp. 547–586 (2006)

    Google Scholar 

  212. Woosley, S.E.: Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ 405, 273 (1993). https://doi.org/10.1086/172359

    Article  ADS  Google Scholar 

  213. Woosley, S.E.: Bright supernovae from magnetar birth. ApJ 719(2), L204–L207 (2010). https://doi.org/10.1088/2041-8205/719/2/L204

    Article  ADS  Google Scholar 

  214. Woosley, S.E.: Models for gamma-ray burst progenitors and central engines (2011). arXiv e-prints arXiv:1105.4193

    Google Scholar 

  215. Zhang, B.: The physics of gamma-ray bursts (2018). https://doi.org/10.1017/9781139226530

  216. Zhang, B.: Astrophysics: A fast radio burst with an unexpected repeat period (2020). arXiv e-prints arXiv:2006.10727

    Google Scholar 

  217. Zhang, B.: The physical mechanisms of fast radio bursts. Nature 587(7832), 45–53 (2020). https://doi.org/10.1038/s41586-020-2828-1

    Article  ADS  Google Scholar 

  218. Zhang, B., Liang, E., Page, K.L., et al.: GRB radiative efficiencies derived from the swift data: GRBs versus XRFs, long versus short. ApJ 655(2), 989–1001 (2007). https://doi.org/10.1086/510110

    Article  ADS  Google Scholar 

  219. Zhang, B., Mészáros, P.: Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. ApJ 552(1), L35–L38 (2001). https://doi.org/10.1086/320255

    Article  ADS  Google Scholar 

  220. Zhang, B., Yan, H.: The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. ApJ 726(2), 90 (2011). https://doi.org/10.1088/0004-637X/726/2/90

    Article  ADS  Google Scholar 

  221. Zhang, Y.G., Gajjar, V., Foster, G., et al.: Fast radio burst 121102 pulse detection and periodicity: a machine learning approach. ApJ 866(2), 149 (2018). https://doi.org/10.3847/1538-4357/aadf31

    Article  ADS  Google Scholar 

  222. Zhong, S.Q., Dai, Z.G.: Magnetars from neutron star-white dwarf mergers: application to fast radio bursts. ApJ 893(1), 9 (2020). https://doi.org/10.3847/1538-4357/ab7bdf

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank G. Ghisellini, B. Margalit, B. Metzger and A. Papitto for careful reading of the manuscript and helpful comments and suggestions. LS acknowledges financial contributions from ASI-INAF agreements 2017-14-H.O and I/037/12/0 and from “iPeska” research grant (P.I. Andrea Possenti) funded under the INAF call PRIN-SKA/CTA (resolution 70/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Stella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dall’Osso, S., Stella, L. (2022). Millisecond Magnetars. In: Bhattacharyya, S., Papitto, A., Bhattacharya, D. (eds) Millisecond Pulsars. Astrophysics and Space Science Library, vol 465. Springer, Cham. https://doi.org/10.1007/978-3-030-85198-9_8

Download citation

Publish with us

Policies and ethics