Skip to main content

Radio Millisecond Pulsars

  • Chapter
  • First Online:
Millisecond Pulsars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 465))

Abstract

The extreme timing stability of radio millisecond pulsars (MSPs) combined with their exotic environment and evolutionary history makes them excellent laboratories to probe matter in extreme condition. Population studies indicate that we have discovered less than five per cent of the MSPs of our Galaxy, implying that a huge majority of radio MSPs are waiting to be discovered with improved search techniques and more sensitive surveys. In this chapter, we provide an overview of the present status of ongoing and upcoming surveys for MSPs. Observed spectra, profile and polarisation properties of known radio MSPs are also summarised. Finally, we describe how the timing studies of radio MSPs enable a huge science return including attempts to detect gravitational waves using an array of MSPs, gravity tests using individual interesting MSP systems, as well as probing the intra-binary material using eclipses observed in MSPs in compact binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://astro.phys.wvu.edu/GalacticMSPs/.

  2. 2.

    Available at http://www.naic.edu/~pfreire/GCpsr.html.

  3. 3.

    Available at https://www.atnf.csiro.au/research/pulsar/psrcat/.

  4. 4.

    https://github.com/samb8s/PsrPopPy.

  5. 5.

    http://astro.phys.wvu.edu/GalacticMSPs/GalacticMSPs.txt.

  6. 6.

    https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars.

  7. 7.

    www.epta.eu.org.

  8. 8.

    www.nanograv.org.

  9. 9.

    www.atnf.csiro.au/research/pulsar/ppta.

  10. 10.

    https://apatruno.wordpress.com/about/millisecond-pulsar-catalogue/.

References

  1. Alpar, M.A., Cheng, A.F., Ruderman, M.A., Shaham, J.: A new class of radio pulsars. Nature 300(5894), 728–730 (1982). https://doi.org/10.1038/300728a0

    Article  ADS  Google Scholar 

  2. Andersen, B.C., Ransom, S.M.: A Fourier Domain “Jerk” Search for Binary Pulsars. Astrophys. J. Lett. 863(1), L13 (2018). https://doi.org/10.3847/2041-8213/aad59f

    Article  ADS  Google Scholar 

  3. Antoniadis, J., Freire, P.C.C., Wex, N., et al.: A massive pulsar in a compact relativistic binary. Science 340(6131) (2013). https://doi.org/10.1126/science.1233232

  4. Archibald, A.M., Stairs, I.H., Ransom, S.M., et al.: A radio pulsar/X-ray binary link. Science 324(5933), 1411 (2009). https://doi.org/10.1126/science.1172740

    Article  ADS  Google Scholar 

  5. Archibald, A.M., Gusinskaia, N.V., Hessels, J.W.T., et al.: Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 559(7712), 73–76 (2018). https://doi.org/10.1038/s41586-018-0265-1

    Article  ADS  Google Scholar 

  6. Atwood, W.B., Abdo, A.A., Ackermann, M., et al.: The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 697(2), 1071–1102 (2009). https://doi.org/10.1088/0004-637X/697/2/1071

    Article  ADS  Google Scholar 

  7. Backer, D.C.: Pulsar nulling phenomena. Nature 228(5266), 42–43 (1970). https://doi.org/10.1038/228042a0

    Article  ADS  Google Scholar 

  8. Barnard, J.J., Arons, J.: Wave propagation in pulsar magnetospheres: refraction of rays in the open flux zone. Astrophys. J. 302, 138 (1986). https://doi.org/10.1086/163979

    Article  ADS  Google Scholar 

  9. Barr, E.D., Guillemot, L., Champion, D.J., et al.: Pulsar searches of Fermi unassociated sources with the Effelsberg telescope. Mon. Not. R. Astron. Soc. 429(2), 1633–1642 (2013). https://doi.org/10.1093/mnras/sts449

    Article  ADS  Google Scholar 

  10. Bassa, C.G., Pleunis, Z., Hessels, J.W.T., et al.: LOFAR discovery of the fastest-spinning millisecond pulsar in the galactic field. Astrophys. J. Lett. 846(2), L20 (2017). https://doi.org/10.3847/2041-8213/aa8400

    Article  ADS  Google Scholar 

  11. Bates, S.D., Lorimer, D.R., Rane, A., Swiggum, J.: PSRPOPPy: an open-source package for pulsar population simulations. Mon. Not. R. Astron. Soc. 439(3), 2893–2902 (2014). https://doi.org/10.1093/mnras/stu157

    Article  ADS  Google Scholar 

  12. Bhattacharya, D., van den Heuvel, E.P.J.: Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 203(1–2), 1–124 (1991). https://doi.org/10.1016/0370-1573(91)90064-S

    Article  ADS  Google Scholar 

  13. Bhattacharyya, B., Roy, J., Ray, P.S., et al.: GMRT discovery of PSR J1544+ 4937: an eclipsing black-widow pulsar identified with a fermi-LAT source. Astrophys. J. Lett. 773(1), L12 (2013). https://doi.org/10.1088/2041-8205/773/1/L12

    Article  ADS  Google Scholar 

  14. Bhattacharyya, B., Cooper, S., Malenta, M., et al.: The GMRT high resolution southern sky survey for pulsars and transients. I. Survey description and initial discoveries. Astrophys. J. 817(2), 130 (2016). https://doi.org/10.3847/0004-637X/817/2/130

    Google Scholar 

  15. Bhattacharyya, B., Roy, J., Stappers, B.W., et al.: The GMRT high-resolution southern sky survey for pulsars and transients. II. New discoveries, timing, and polarization properties. Astrophys. J. 881(1), 59 (2019). https://doi.org/10.3847/1538-4357/ab2bf3

  16. Bilous, A.V., Ransom, S.M., Demorest, P.: Unusually bright single pulses from the binary pulsar B1744-24A: a case of strong lensing? Astrophys. J. 877(2), 125 (2019). https://doi.org/10.3847/1538-4357/ab16dd

    Article  ADS  Google Scholar 

  17. Broderick, J.W., Fender, R.P., Breton, R.P., et al.: Low-radio-frequency eclipses of the redback pulsar J2215+ 5135 observed in the image plane with LOFAR. Mon. Not. R. Astron. Soc. 459(3), 2681–2689 (2016). https://doi.org/10.1093/mnras/stw794

    Article  ADS  Google Scholar 

  18. Burke-Spolaor, S., Taylor, S.R., Charisi, M., et al.: The astrophysics of nanohertz gravitational waves. Astron. Astrophys. Rev. 27(1), 5 (2019). https://doi.org/10.1007/s00159-019-0115-7

    Article  ADS  Google Scholar 

  19. Cameron, A.D., Barr, E.D., Champion, D.J., et al.: An investigation of pulsar searching techniques with the fast folding algorithm. Mon. Not. R. Astron. Soc. 468(2), 1994–2010 (2017). https://doi.org/10.1093/mnras/stx589.

    Article  ADS  Google Scholar 

  20. Camilo, F., Kerr, M., Ray, P.S., Saz Parkinson, P.M., Wood, K.S., et al.: Parkes radio searches of fermi gamma-ray sources and millisecond pulsar discoveries. Astrophys. J. 810(2), 85 (2015). https://doi.org/10.1088/0004-637X/810/2/85

    Article  ADS  Google Scholar 

  21. Chen, K., Ruderman, M.: Origin and radio pulse properties of millisecond pulsars. Astrophys. J. 408, 179 (1993). https://doi.org/10.1086/172578

    Article  ADS  Google Scholar 

  22. Chennamangalam, J., Lorimer, D.R.: The galactic centre pulsar population. Mon. Not. R. Astron. Soc. 440, L86–L90 (2014). https://doi.org/10.1093/mnrasl/slu025

    Article  ADS  Google Scholar 

  23. CHIME/Pulsar Collaboration, Amiri, M., Bandura, K.M., Boyle, P.J., et al.: The CHIME pulsar project: system overview. e-prints. arXiv:2008.05681 (2020)

    Google Scholar 

  24. Cognard, I., Guillemot, L., Johnson, T.J., et al.: Discovery of two millisecond pulsars in fermi sources with the Nançay radio telescope. Astrophys. J. 732(1), 47 (2011). https://doi.org/10.1088/0004-637X/732/1/47

    Article  ADS  Google Scholar 

  25. Crawford, F., Lyne, A.G., Stairs, I.H., et al.: PSR J1723-2837: an eclipsing binary radio millisecond pulsar. Astrophys. J. 776(1), 20 (2013). https://doi.org/10.1088/0004-637X/776/1/20

    Article  ADS  Google Scholar 

  26. Crowter, K., Stairs, I.H., McPhee, C.A., et al.: The GBT 350-MHz drift scan pulsar survey – III. Detection of a magnetic field in the eclipsing material of PSR J2256-1024. Mon. Not. R. Astron. Soc. 495(3), 3052–3064 (2020). https://doi.org/10.1093/mnras/staa933

  27. Dai, S., Hobbs, G., Manchester, R.N., et al.: A study of multifrequency polarization pulse profiles of millisecond pulsars. Mon. Not. R. Astron. Soc. 449(3), 3223–3262 (2015). https://doi.org/10.1093/mnras/stv508

    Article  ADS  Google Scholar 

  28. D’Amico, N., Possenti, A., Manchester, R.N., et al.: An eclipsing millisecond pulsar with a possible main-sequence companion in NGC 6397. Astrophys. J. Lett. 561(1), L89–L92 (2001). https://doi.org/10.1086/324562

    Article  ADS  Google Scholar 

  29. D’Amico, N., Possenti, A., Fici, L., et al.: Timing of millisecond pulsars in NGC 6752: evidence for a high mass-to-light ratio in the cluster core. Astrophys. J. Lett. 570(2), L89–L92 (2002). https://doi.org/10.1086/341030

    Article  ADS  Google Scholar 

  30. DeCesar, M.E., Ransom, S.M., Kaplan, D.L., et al.: A highly eccentric 3.9 millisecond binary pulsar in the globular cluster NGC 6652. Astrophys. J. Lett. 807(2), L23 (2015). https://doi.org/10.1088/2041-8205/807/2/L23

  31. Demorest, P.B., Pennucci, T., Ransom, S.M., et al.: A two-solar-mass neutron star measured using Shapiro delay. Nature 467(7319), 1081–1083 (2010). https://doi.org/10.1038/nature09466

    Article  ADS  Google Scholar 

  32. Deneva, J.S., Ray, P.S., Camilo, F., et al.: Multiwavelength observations of the redback millisecond pulsar J1048+ 2339. Astrophys. J. 823(2), 105 (2016). https://doi.org/10.3847/0004-637X/823/2/105

    Article  ADS  Google Scholar 

  33. Detweiler, S.: Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100–1104 (1979). https://doi.org/10.1086/157593

    Article  ADS  Google Scholar 

  34. Eatough, R., Lazio, T.J.W., Casanellas, J., et al.: Observing radio pulsars in the galactic centre with the square kilometre array. In: Proceedings of Science, Advancing Astrophysics with the Square Kilometre Array (AASKA14), PoS(AASKA14), id. 45 (2015)

    Google Scholar 

  35. Faucher-Giguère, C.A., Kaspi, V.M.: Birth and evolution of iisolated radio pulsars. Astrophys. J. 643(1), 332–355 (2006). https://doi.org/10.1086/501516

    Article  ADS  Google Scholar 

  36. Ferdman, R.D., Freire, P.C.C., Perera, B.B.P., et al.: Asymmetric mass ratios for bright double neutron-star mergers. Nature 583(7815), 211–214 (2020). https://doi.org/10.1038/s41586-020-2439-x

    Article  ADS  Google Scholar 

  37. Foster, R.S., Backer, D.C.: Constructing a pulsar timing array. Astrophys. J. 361, 300 (1990). https://doi.org/10.1086/169195

    Article  ADS  Google Scholar 

  38. Freire, P.C., Kramer, M., Lyne, A.G., et al.: Detection of ionized gas in the globular cluster 47 tucanae. Astrophys. J. Lett. 557(2), L105–L108 (2001). https://doi.org/10.1086/323248

    Article  ADS  Google Scholar 

  39. Freire, P.C.C., Ransom, S.M., Bégin, S., et al.: Eight new millisecond pulsars in NGC 6440 and NGC 6441. Astrophys. J. 675(1), 670–682 (2008). https://doi.org/10.1086/526338

    Article  ADS  Google Scholar 

  40. Fruchter, A.S., Stinebring, D.R., Taylor, J.H.: A millisecond pulsar in an eclipsing binary. Nature 333(6170), 237–239 (1988). https://doi.org/10.1038/333237a0

    Article  ADS  Google Scholar 

  41. Hellings, R.W., Downs, G.S.: Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 265, L39–L42 (1983). https://doi.org/10.1086/183954

    Article  ADS  Google Scholar 

  42. Hessels, J.W.T., Ransom, S.M., Stairs, I.H., et al.: A radio pulsar spinning at 716 Hz. Science 311(5769), 1901–1904 (2006). https://doi.org/10.1126/science.1123430

    Article  ADS  Google Scholar 

  43. Hui, C.Y., Wu, K., Han, Q., et al.: On the orbital properties of millisecond pulsar binaries. Astrophys. J. 864(1), 30 (2018). https://doi.org/10.3847/1538-4357/aad5ec

    Article  ADS  Google Scholar 

  44. Hulse, R.A., Taylor, J.H.: Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51–L53 (1975). https://doi.org/10.1086/181708

    Article  ADS  Google Scholar 

  45. Keane, E., Bhattacharyya, B., Kramer, M., et al.: A cosmic census of radio pulsars with the SKA. In: Proceedings of Science, Advancing Astrophysics with the Square Kilometre Array (AASKA14), PoS(AASKA14), id. 40 (2015)

    Google Scholar 

  46. Keane, E.F., Barr, E.D., Jameson, A., et al.: The survey for pulsars and extragalactic radio bursts – I. Survey description and overview. Mon. Not. R. Astron. Soc. 473(1), 116–135 (2018). https://doi.org/10.1093/mnras/stx2126

    Article  ADS  Google Scholar 

  47. Kondratiev, V.I., Verbiest, J.P.W., Hessels, J.W.T., et al.: A LOFAR census of millisecond pulsars. Astron. Astrophys. 585, A128 (2016). https://doi.org/10.1051/0004-6361/201527178

    Article  Google Scholar 

  48. Kramer, M.: Gravity tests with pulsars. In: Weltevrede, P., Perera, B.B.P., Preston, L.L., Sanidas S. (eds.) Pulsar astrophysics the next fifty years, vol. 337, pp. 128–133 (2018). https://doi.org/10.1017/S1743921317009243

  49. Kramer, M., Xilouris, K.M., Lorimer, D.R., et al.: The characteristics of millisecond pulsar emission. I. Spectra, pulse shapes, and the beaming fraction. Astrophys. J. 501(1), 270–285 (1998). https://doi.org/10.1086/305790

  50. Kramer, M., Lyne, A.G., O’Brien, J.T., et al.: A periodically active pulsar giving insight into magnetospheric physics. Science 312(5773), 549–551 (2006). https://doi.org/10.1126/science.1124060

    Article  ADS  Google Scholar 

  51. Kramer, M., Stairs, I.H., Manchester, R.N., et al.: Tests of general relativity from timing the double pulsar. Science 314(5796), 97–102 (2006). https://doi.org/10.1126/science.1132305

    Article  ADS  Google Scholar 

  52. Kudale, S., Roy, J., Bhattacharyya, B., et al.: Study of eclipses for redback pulsar J1227-4853. Astrophys. J. 900(2), 194 (2020). https://doi.org/10.3847/1538-4357/aba902

    Article  ADS  Google Scholar 

  53. Kuniyoshi, M., Verbiest, J.P.W., Lee, K.J., et al.: Low-frequency spectral turn-overs in millisecond pulsars studied from imaging observations. Mon. Not. R. Astron. Soc. 453(1), 828–836 (2015). https://doi.org/10.1093/mnras/stv1604

    Article  ADS  Google Scholar 

  54. Kuzmin, A. D., Losovsky, B.Y.: No low-frequency turn-over in the spectra of millisecond pulsars. A&A 368(1), 230–238 (2001). https://doi.org/10.1051/0004-6361:20000507

    Article  ADS  Google Scholar 

  55. Lattimer, J.M., Prakash, M.: Neutron star structure and the equation of state. Astrophys. J. 550(1), 426–442 (2001). https://doi.org/10.1086/319702

    Article  ADS  Google Scholar 

  56. Lee, K.J., Bassa, C.G., Janssen, G.H., et al.: The optimal schedule for pulsar timing array observations. Mon. Not. R. Astron. Soc. 423(3), 2642–2655 (2012). https://doi.org/10.1111/j.1365-2966.2012.21070.x

    Article  ADS  Google Scholar 

  57. Levin, L., Armour, W., Baffa, C., et al., SKA TDT Team: Pulsar searches with the SKA. In: Weltevrede, P., Perera, B.B.P., Preston, L.L., Sanidas, S. (eds.) Pulsar Astrophysics the Next Fifty Years, vol. 337, pp. 171–174 (2018). https://doi.org/10.1017/S1743921317009528

  58. Li, D., Lin, F.X., Main, R., et al.: Constraining magnetic fields through plasma lensing: application to the Black Widow pulsar. Mon. Not. R. Astron. Soc. 484(4), 5723–5733 (2019). https://doi.org/10.1093/mnras/stz374

    Article  ADS  Google Scholar 

  59. Liu, K., Wex, N., Kramer, M., et al.: Prospects for probing the spacetime of Sgr A* with pulsars. Astrophys. J. 747(1), 1 (2012). https://doi.org/10.1088/0004-637X/747/1/1

    Article  ADS  Google Scholar 

  60. Liu, K., Eatough, R.P., Wex, N., Kramer, M.: Pulsar-black hole binaries: prospects for new gravity tests with future radio telescopes. Mon. Not. R. Astron. Soc. 445(3), 3115–3132 (2014). https://doi.org/10.1093/mnras/stu1913

    Article  ADS  Google Scholar 

  61. Lorimer, D.R.: Binary and millisecond pulsars. Living Rev. Relativ. 11(1), 8 (2008). https://doi.org/10.12942/lrr-2008-8

    Article  ADS  MATH  Google Scholar 

  62. Lorimer, D.R., Kramer, M.: Handbook of Pulsar Astronomy, vol. 4. Cambridge Univ. Press, Cambridge (2004)

    Google Scholar 

  63. Lyne, A.G., Manchester, R.N.: The shape of pulsar radio beams. Mon. Not. R. Astron. Soc. 234, 477–508 (1988). https://doi.org/10.1093/mnras/234.3.477

    Article  ADS  Google Scholar 

  64. Lyne, A., Hobbs, G., Kramer, M., et al.: Switched magnetospheric regulation of pulsar spin-down. Science 329(5990), 408 (2010). https://doi.org/10.1126/science.1186683

    Article  ADS  Google Scholar 

  65. Manchester, R.N., IPTA: the international pulsar timing array. Classical Quantum Gravity 30(22), 224010 (2013). https://doi.org/10.1088/0264-9381/30/22/224010

    Article  ADS  Google Scholar 

  66. Manchester, R.N., Johnston, S.: Polarization properties of two pulsars. Astrophys. J. Lett. 441, L65 (1995). https://doi.org/10.1086/187791

    Article  ADS  Google Scholar 

  67. Manchester, R.N., Hobbs, G.B., Teoh, A., Hobbs, M.: The Australia telescope national facility pulsar catalogue. Astron. J. 129(4), 1993–2006 (2005). https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  68. Martinez, J.G., Gentile, P., Freire, P.C.C., et al.: The discovery of six recycled pulsars from the arecibo 327 MHz drift-scan pulsar survey. Astrophys. J. 881, 166 (2019). https://doi.org/10.3847/1538-4357/ab2877

    Article  ADS  Google Scholar 

  69. McEwen, A.E., Spiewak, R., Swiggum, J.K., et al.: The green bank north celestial cap pulsar survey. V. Pulsar census and survey sensitivity. Astrophys. J. 892(2), 76 (2020). https://doi.org/10.3847/1538-4357/ab75e2

    Google Scholar 

  70. Morello, V., Keane, E.F., Enoto, T., et al.: The survey for pulsars and extragalactic radio bursts – IV. Discovery and polarimetry of a 12.1-s radio pulsar. Mon. Not. R. Astron. Soc. 493(1), 1165–1177 (2020). https://doi.org/10.1093/mnras/staa321

  71. Papitto, A., Ferrigno, C., Bozzo, E., et al.: Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501(7468), 517–520 (2013). https://doi.org/10.1038/nature12470

    Article  ADS  Google Scholar 

  72. Parent, E., Kaspi, V.M., Ransom, S.M., et al.: The implementation of a fast-folding pipeline for long-period pulsar searching in the PALFA survey. Astrophys. J. 861(1), 44 (2018). https://doi.org/10.3847/1538-4357/aac5f0

    Article  ADS  Google Scholar 

  73. Parent, E., Kaspi, V.M., Ransom, S.M., et al.: Eight millisecond pulsars discovered in the arecibo PALFA survey. Astrophys. J. 886(2), 148 (2019). https://doi.org/10.3847/1538-4357/ab4f85

    Article  ADS  Google Scholar 

  74. Perera, B.B.P., DeCesar, M.E., Demorest, P.B., et al.: The international pulsar timing array: second data release. Mon. Not. R. Astron. Soc. 490(4), 4666–4687 (2019). https://doi.org/10.1093/mnras/stz2857

    Article  ADS  Google Scholar 

  75. Pleunis, Z., Bassa, C.G., Hessels, J.W.T., et al.: A millisecond pulsar discovery in a survey of unidentified fermi γ-ray sources with LOFAR. Astrophys. J. Lett. 846(2), L19 (2017). https://doi.org/10.3847/2041-8213/aa83ff

    Article  ADS  Google Scholar 

  76. Podsiadlowski, P., Rappaport, S., Pfahl, E.D.: Evolutionary sequences for low- and intermediate-mass X-ray binaries. Astrophys. J. 565(2), 1107–1133 (2002). https://doi.org/10.1086/324686

    Article  ADS  Google Scholar 

  77. Polzin, E.J., Breton, R.P., Clarke, A.O., et al.: The low-frequency radio eclipses of the black widow pulsar J1810+ 1744. Mon. Not. R. Astron. Soc. 476(2), 1968–1981 (2018). https://doi.org/10.1093/mnras/sty349

    Article  ADS  Google Scholar 

  78. Polzin, E.J., Breton, R.P., Stappers, B.W., et al.: Long-term variability of a black widow’s eclipses – A decade of PSR J2051-0827. Mon. Not. R. Astron. Soc. 490(1), 889–908 (2019). https://doi.org/10.1093/mnras/stz2579

    Article  ADS  Google Scholar 

  79. Polzin, E.J., Breton, R.P., Bhattacharyya, B., et al.: Study of spider pulsar binary eclipses and discovery of an eclipse mechanism transition. Mon. Not. R. Astron. Soc. 494(2), 2948–2968 (2020). https://doi.org/10.1093/mnras/staa596

    Article  ADS  Google Scholar 

  80. Radhakrishnan, V., Cooke, D.J.: Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225 (1969)

    ADS  Google Scholar 

  81. Rankin, J.M.: Toward an empirical theory of pulsar emission. VI. The geometry of the conal emission region. Astrophys. J. 405, 285 (1993). https://doi.org/10.1086/172361

  82. Ransom, S.M., Hessels, J.W.T., Stairs, I.H., et al.: Twenty-one millisecond pulsars in terzan 5 using the green bank telescope. Science 307(5711), 892–896 (2005). https://doi.org/10.1126/science.1108632

    Article  ADS  Google Scholar 

  83. Ransom, S.M., Ray, P.S., Camilo, F., et al.: Three millisecond pulsars in fermi LAT unassociated bright sources. Astrophys. J. Lett. 727(1), L16 (2011). https://doi.org/10.1088/2041-8205/727/1/L16

    Article  ADS  Google Scholar 

  84. Rasio, F.A., Pfahl, E.D., Rappaport, S.: Formation of short-period binary pulsars in globular clusters. Astrophys. J. Lett. 532(1), L47–L50 (2000). https://doi.org/10.1086/312555

    Article  ADS  Google Scholar 

  85. Ravi, V., Manchester, R.N., Hobbs, G.: Wide radio beams from γ-ray pulsars. Astrophys. J. Lett. 716(1), L85–L89 (2010). https://doi.org/10.1088/2041-8205/716/1/L85

    Article  ADS  Google Scholar 

  86. Roberts, M.S.E.: Surrounded by spiders! New black widows and redbacks in the Galactic field. In: van Leeuwen, J. (ed.) Neutron Stars and Pulsars: Challenges and Opportunities After 80 Years, vol. 291, pp. 127–132 (2013). https://doi.org/10.1017/S174392131202337X

  87. Romani, R.W., Yadigaroglu, I.A.: Gamma-ray pulsars: emission zones and viewing geometries. Astrophys. J. 438, 314 (1995). https://doi.org/10.1086/175076

    Article  ADS  Google Scholar 

  88. Roy, J., Ray, P.S., Bhattacharyya, B., et al.: Discovery of Psr J1227-4853: a transition from a low-mass X-ray binary to a redback millisecond pulsar. Astrophys. J. Lett. 800(1), L12 (2015). https://doi.org/10.1088/2041-8205/800/1/L12

    Article  ADS  Google Scholar 

  89. Sanidas, S., Cooper, S., Bassa, C.G., et al.: The LOFAR tied-array all-sky survey (LOTAAS): survey overview and initial pulsar discoveries. Astron. Astrophys. 626, A104 (2019). https://doi.org/10.1051/0004-6361/201935609

    Article  Google Scholar 

  90. Shemar, S.L., Lyne, A.G.: Observations of pulsar glitches. Mon. Not. R. Astron. Soc. 282(2), 677–690 (1996). https://doi.org/10.1093/mnras/282.2.677

    Article  ADS  Google Scholar 

  91. Spitler, L.G., Lee, K.J., Eatough, R.P., et al.: Pulse broadening measurements from the galactic center pulsar J1745-2900. Astrophys. J. Lett. 780(1), L3 (2014). https://doi.org/10.1088/2041-8205/780/1/L3

    Article  ADS  Google Scholar 

  92. Staelin, D.H.: Fast folding algorithm for detection of periodic pulse trains. IEEE Proc. 57, 724–725 (1969). https://doi.org/10.1109/PROC.1969.7051

    Article  ADS  Google Scholar 

  93. Stappers, B.W., Bailes, M., Lyne, A.G., et al.: Probing the eclipse region of a binary millisecond pulsar. Astrophys. J. Lett. 465, L119 (1996). https://doi.org/10.1086/310148

    Article  ADS  Google Scholar 

  94. Stappers, B.W., Keane, E.F., Kramer, M., et al.: The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array. Philos. Trans. R. Soc. Lond. A 376(2120), 20170293 (2018). https://doi.org/10.1098/rsta.2017.0293

    ADS  Google Scholar 

  95. Stovall, K., Freire, P.C.C., Chatterjee, S., et al.: PALFA discovery of a highly relativistic double neutron star binary. Astrophys. J. Lett. 854(2), L22 (2018). https://doi.org/10.3847/2041-8213/aaad06

    Article  ADS  Google Scholar 

  96. Tauris, T.M., Savonije, G.J.: Formation of millisecond pulsars. I. Evolution of low-mass X-ray binaries with P_orb> 2 days. Astron. Astrophys. 350, 928–944 (1999)

    Google Scholar 

  97. Taylor, J.H., Weisberg, J.M.: A new test of general relativity – gravitational radiation and the binary pulsar PSR 1913+ 16. Astrophys. J. 253, 908–920 (1982). https://doi.org/10.1086/159690

    Article  ADS  Google Scholar 

  98. Thompson, C., Blandford, R.D., Evans, C.R., Phinney, E.S.: Physical processes in eclipsing pulsars: eclipse mechanisms and diagnostics. Astrophys. J. 422, 304 (1994). https://doi.org/10.1086/173728

    Article  ADS  Google Scholar 

  99. Wharton, R.S., Chatterjee, S., Cordes, J.M., et al.: Multiwavelength constraints on pulsar populations in the galactic center. Astrophys. J. 753(2), 108 (2012). https://doi.org/10.1088/0004-637X/753/2/108

    Article  ADS  Google Scholar 

  100. Xilouris, K.M., Kramer, M., Jessner, A., et al.: The characteristics of millisecond pulsar emission. II. Polarimetry. Astrophys. J. 501(1), 286–306 (1998). https://doi.org/10.1086/305791

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaswati Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, B., Roy, J. (2022). Radio Millisecond Pulsars. In: Bhattacharyya, S., Papitto, A., Bhattacharya, D. (eds) Millisecond Pulsars. Astrophysics and Space Science Library, vol 465. Springer, Cham. https://doi.org/10.1007/978-3-030-85198-9_1

Download citation

Publish with us

Policies and ethics