Skip to main content

On the Complexity and Parallel Implementation of Hensel’s Lemma and Weierstrass Preparation

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12865))

Included in the following conference series:

Abstract

Hensel’s lemma, combined with repeated applications of Weierstrass preparation theorem, allows for the factorization of polynomials with multivariate power series coefficients. We present a complexity analysis for this method and leverage those results to guide the load-balancing of a parallel implementation to concurrently update all factors. In particular, the factorization creates a pipeline where the terms of degree k of the first factor are computed simultaneously with the terms of degree \(k-1\) of the second factor, etc. An implementation challenge is the inherent irregularity of computational work between factors, as our complexity analysis reveals. Additional resource utilization and load-balancing is achieved through the parallelization of Weierstrass preparation. Experimental results show the efficacy of this mixed parallel scheme, achieving up to 9\(\times \) parallel speedup on a 12-core machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvandi, P., Ataei, M., Kazemi, M., Moreno Maza, M.: On the extended Hensel construction and its application to the computation of real limit points. J. Symb. Comput. 98, 120–162 (2020)

    Article  MathSciNet  Google Scholar 

  2. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (version 1.791) (2021). http://www.bpaslib.org

  3. Asadi, M., Brandt, A., Kazemi, M., Moreno Maza, M., Postma, E.: Multivariate power series in Maple. In: Proceedings of MC 2020 (2021, to appear)

    Google Scholar 

  4. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M.: Algorithms and data structures for sparse polynomial arithmetic. Mathematics 7(5), 441 (2019)

    Article  Google Scholar 

  5. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: On the parallelization of triangular decompositions. In: Proceedings of ISSAC 2020, pp. 22–29. ACM (2020)

    Google Scholar 

  6. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization of triangular decompositions: techniques and implementation. J. Symb. Comput. (2021, to appear)

    Google Scholar 

  7. Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings and application to error correcting codes. Appl. Algebra Eng. Commun. Comput. 24(6), 413–443 (2013)

    Article  MathSciNet  Google Scholar 

  8. Brandt, A., Kazemi, M., Moreno-Maza, M.: Power series arithmetic with the BPAS library. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 108–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_7

    Chapter  Google Scholar 

  9. Burge, W.H., Watt, S.M.: Infinite structures in scratchpad II. In: Davenport, J.H. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 138–148. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51517-8_103

    Chapter  Google Scholar 

  10. Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series I. J. Complex. 2(4), 271–294 (1986)

    Article  MathSciNet  Google Scholar 

  11. Fischer, G.: Plane Algebraic Curves. AMS (2001)

    Google Scholar 

  12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, New York (2003)

    Google Scholar 

  13. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library (version 6.1.2) (2020). http://gmplib.org

  14. Haidar, A., Kurzak, J., Luszczek, P.: An improved parallel singular value algorithm and its implementation for multicore hardware. In: Proceedings of SC 2013. ACM (2013)

    Google Scholar 

  15. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symb. Comput. 34(6), 479–542 (2002)

    Article  MathSciNet  Google Scholar 

  16. van der Hoeven, J.: Faster relaxed multiplication. In: Proceedings of ISSAC 2014, pp. 405–412. ACM (2014)

    Google Scholar 

  17. Iwami, M.: Analytic factorization of the multivariate polynomial. In: Proceedings of CASC 2003, pp. 213–225 (2003)

    Google Scholar 

  18. Kung, H.T., Traub, J.F.: All algebraic functions can be computed fast. J. ACM 25(2), 245–260 (1978)

    Article  MathSciNet  Google Scholar 

  19. Maplesoft, a division of Waterloo Maple Inc.: Maple (2020). www.maplesoft.com/

  20. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Efficient Computation. Elsevier, Amsterdam (2012)

    Google Scholar 

  21. Michailidis, P.D., Margaritis, K.G.: Parallel direct methods for solving the system of linear equations with pipelining on a multicore using OpenMP. J. Comput. Appl. Math. 236(3), 326–341 (2011)

    Article  MathSciNet  Google Scholar 

  22. Monagan, M., Vrbik, P.: Lazy and forgetful polynomial arithmetic and applications. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 226–239. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04103-7_20

    Chapter  Google Scholar 

  23. Neiger, V., Rosenkilde, J., Schost, É.: Fast computation of the roots of polynomials over the ring of power series. In: Proceedings of ISSAC 2017, pp. 349–356. ACM (2017)

    Google Scholar 

  24. Sasaki, T., Kako, F.: Solving multivariate algebraic equation by Hensel construction. Japan J. Indust. Appl. Math. 16(2), 257–285 (1999)

    Article  MathSciNet  Google Scholar 

  25. Sasaki, T., Inaba, D.: Enhancing the extended Hensel construction by using Gröbner bases. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 457–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6_29

    Chapter  Google Scholar 

  26. Scott, M.L.: Programming Language Pragmatics, 3rd edn. Academic Press, New York (2009)

    MATH  Google Scholar 

  27. Shoup, V., et al.: NTL: A library for doing number theory (version 11.4.3) (2020). www.shoup.net/ntl/

  28. The Sage Developers: SageMath, the Sage Mathematics Software System (version 9.1) (2020). https://www.sagemath.org

Download references

Acknowledgments

The authors would like to thank the reviewers for their helpful comments and NSERC of Canada (award CGSD3-535362-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandt, A., Moreno Maza, M. (2021). On the Complexity and Parallel Implementation of Hensel’s Lemma and Weierstrass Preparation. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85165-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85164-4

  • Online ISBN: 978-3-030-85165-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics