Skip to main content

Intracellular Targets in SLE

  • Chapter
  • First Online:
Pathogenesis of Systemic Lupus Erythematosus
  • 434 Accesses

Abstract

In SLE, the magnitude or persistence of the disease is determined by the perpetuation of an exaggerated innate and adaptive immune responses towards self-antigens. Soluble mediators acting on cellular surface receptors bring signals to a variety of immune cells, and then there is a complex network of intracellular signalling that leads to a variety of transcriptional changes. These pathways can be linked to the particular cytokines or chemokines but can also be activated by receptor independent responses. The kinases that initiate these pathways are generally classified according to their structure and primary functions. While there has been much interest to develop small molecule drug targeting these intracellular targets, the attrition rate of those made to clinical development has been quite high. In SLE, a number of emerging targets has been studied and developed. Some of these are closer to the therapeutic horizon than others and will be explored specifically in this chapter. Key T cell intracellular pathways such as the calcium-calcineurin-Nuclear Factor of an Activated T cells (NFAT) pathway, and Mitogen-Activated Protein Kinases (MAPK), and B cell receptor mediated pathways such as Brunton’s tyrosine kinase (BTK), or spleen tyrosine kinase (SYK) pathway, and the Janus kinase (JAK), ubiquitin–proteasome system (UPS), and the Mechanistic Target of Rapamycin (mTOR) pathways that are present in broad ranging types of immune cells will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Palmisano M, Sun D, Zhou S (2020) Pharmacokinetic disposition difference between cyclosporine and voclosporin drives their distinct efficacy and safety profiles in clinical studies. Clin Pharmacol 12:83–96

    PubMed  PubMed Central  Google Scholar 

  2. Germano V, Picchianti Diamanti A, Ferlito C, Podestà E, Salemi S, Migliore A et al (2011) Cyclosporine A in the long-term management of systemic lupus erythematosus. J Biol Regul Homeost Agents 25(3):397–403

    PubMed  CAS  Google Scholar 

  3. Mok CC, Ho LY, Ying SKY, Leung MC, To CH, Ng WL (2020) Long-term outcome of a randomised controlled trial comparing tacrolimus with mycophenolate mofetil as induction therapy for active lupus nephritis. Ann Rheum Dis 79(8):1070–1076

    Article  PubMed  Google Scholar 

  4. Liu Z, Zhang H, Liu Z, Xing C, Fu P, Ni Z et al (2015) Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med 162(1):18–26

    Article  PubMed  Google Scholar 

  5. Zhang H, Liu Z, Zhou M, Chen J, Xing C, Lin H et al (2017) Multitarget therapy for maintenance treatment of lupus nephritis. J Am Soc Nephrol 28(12):3671–3678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rovin BH, Solomons N, Pendergraft WF, Dooley MA, Tumlin J, Romero-Diaz J et al (2019) A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 95(1):219–231

    Article  PubMed  CAS  Google Scholar 

  7. Harikishore A, Yoon HS (2015) Immunophilins: structures, mechanisms and ligands. Curr Mol Pharmacol 9(1):37–47

    Article  Google Scholar 

  8. Azzi JR, Sayegh MH, Mallat SG (2013) Calcineurin inhibitors: 40 years later, can’t live without. J Immunol 191(12):5785–5791

    Article  PubMed  CAS  Google Scholar 

  9. Lee JU, Kim LK, Choi JM (2018) Revisiting the concept of targeting NFAT to control T Cell immunity and autoimmune diseases. Front Immunol 9:2747

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2):375–387

    Article  PubMed  CAS  Google Scholar 

  11. Macián F, López-Rodríguez C, Rao A (2001) Partners in transcription: NFAT and AP-1. Oncogene 20(19):2476–2489

    Article  PubMed  Google Scholar 

  12. Okamura H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A (2004) A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol Cell Biol 24(10):4184–4195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275(5308):1930–1934

    Article  PubMed  CAS  Google Scholar 

  14. Gorelik G, Richardson B (2010) Key role of ERK pathway signaling in lupus. Autoimmunity 43(1):17–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Deng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ et al (2001) Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 44(2):397–407

    Article  PubMed  CAS  Google Scholar 

  16. Bloch M, Kamminga J, Jayewardene A, Bailey M, Carberry A, Vincent T et al (2016) A screening strategy for HIV-associated neurocognitive disorders that accurately identifies patients requiring neurological review. Clin Infect Dis 63(5):687–693

    Article  PubMed  PubMed Central  Google Scholar 

  17. Iwata Y, Wada T, Furuichi K, Sakai N, Matsushima K, Yokoyama H et al (2003) p38 Mitogen-activated protein kinase contributes to autoimmune renal injury in MRL-Fas lpr mice. J Am Soc Nephrol 14(1):57–67

    Article  PubMed  CAS  Google Scholar 

  18. Scharer CD, Blalock EL, Mi T, Barwick BG, Jenks SA, Deguchi T et al (2019) Epigenetic programming underpins B cell dysfunction in human SLE. Nat Immunol 20(8):1071–1082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Surace AEA, Hedrich CM (2019) The role of epigenetics in autoimmune/inflammatory disease. Front Immunol 10:1525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ (2017) JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 17(1):78

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ (2016) Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 12(1):25–36

    Article  PubMed  CAS  Google Scholar 

  22. Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA et al (2018) Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392(10143):222–231

    Article  CAS  Google Scholar 

  23. Fornaro M, Coladonato L, Venerito V, Cacciapaglia F, Lopalco G, Iannone F (2019) Efficacy of baricitinib on refractory skin papulosquamous rash in a patient with systemic lupus erythematosus. Rheumatology (Oxford) 10:kez442. https://doi.org/10.1093/rheumatology/kez442. Epub ahead of print

  24. de Oliveira AB, Alpalhão M, Filipe P, Maia-Silva J (2019) The role of janus kinase inhibitors in the treatment of alopecia areata: a systematic review. Dermatol Ther 32(5):e13053.  https://doi.org/10.1111/dth.13053. Epub 2019 Aug 19. PMID: 31381252

  25. Fetter T, Smith P, Guel T, Braegelmann C, Bieber T, Wenzel J (2020) Selective janus kinase 1 inhibition is a promising therapeutic approach for lupus erythematosus skin lesions. Front Immunol 11:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zimmermann N, Wolf C, Schwenke R, Lüth A, Schmidt F, Engel K et al (2019) Assessment of clinical response to janus kinase inhibition in patients with familial chilblain lupus and TREX1 mutation. JAMA Dermatol 155(3):342–346

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee YH, Bae SC (2016) Association between TYK2 polymorphisms and susceptibility to autoimmune rheumatic diseases: a meta-analysis. Lupus 25(12):1307–1314

    Article  PubMed  CAS  Google Scholar 

  28. Cunninghame Graham DS, Akil M, Vyse TJ (2007) Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology (Oxford) 46(6):927–930

    Article  CAS  Google Scholar 

  29. Contreras-Cubas C, García-Ortiz H, Velázquez-Cruz R, Barajas-Olmos F, Baca P, Martínez-Hernández A et al (2019) Catalytically impaired TYK2 variants are protective against childhood- and adult-onset systemic lupus erythematosus in Mexicans. Sci Rep 9(1):12165

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, Jostins L et al (2016) Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med 8(363):363ra149. https://doi.org/10.1126/scitranslmed.aag1974. PMID: 27807284; PMCID: PMC5737835

  31. Diogo D, Bastarache L, Liao KP, Graham RR, Fulton RS, Greenberg JD et al (2015) TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One 10(4):e0122271.  https://doi.org/10.1371/journal.pone.0122271. PMID: 25849893; PMCID: PMC4388675

  32. Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A, Flinter F et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361(6409):226–233

    Article  PubMed  CAS  Google Scholar 

  33. Bond DA, Maddocks KJ (2020) Current role and emerging evidence for bruton tyrosine kinase inhibitors in the treatment of mantle cell lymphoma. Hematol Oncol Clin North Am 34(5):903–921

    Article  PubMed  Google Scholar 

  34. Tam CS, Opat S, D’Sa S, Jurczak W, Lee HP, Cull G et al (2020) A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study. Blood 136(18):2038–2050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chalmers SA, Wen J, Doerner J, Stock A, Cuda CM, Makinde HM et al (2018) Highly selective inhibition of Bruton’s tyrosine kinase attenuates skin and brain disease in murine lupus. Arthritis Res Ther 20(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bender AT, Pereira A, Fu K, Samy E, Wu Y, Liu-Bujalski L et al (2016) Btk inhibition treats TLR7/IFN driven murine lupus. Clin Immunol 164:65–77

    Article  PubMed  CAS  Google Scholar 

  37. Bender AT, Gardberg A, Pereira A, Johnson T, Wu Y, Grenningloh R et al (2017) Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol Pharmacol 91(3):208–219

    Article  PubMed  CAS  Google Scholar 

  38. Mócsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10(6):387–402

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grammatikos AP, Ghosh D, Devlin A, Kyttaris VC, Tsokos GC (2013) Spleen tyrosine kinase (Syk) regulates systemic lupus erythematosus (SLE) T cell signaling. PLoS One 8(8):e74550. https://doi.org/10.1371/journal.pone.0074550

  40. Krishnan S, Warke VG, Nambiar MP, Tsokos GC, Farber DL (2003) The FcR gamma subunit and Syk kinase replace the CD3 zeta-chain and ZAP-70 kinase in the TCR signaling complex of human effector CD4 T cells. J Immunol 170(8):4189–4195

    Article  PubMed  CAS  Google Scholar 

  41. Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C (2016) The ubiquitin-proteasome system: potential therapeutic targets for Alzheimer’s disease and spinal cord injury. Front Mol Neurosci 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bulatov E, Valiullina A, Sayarova R, Rizvanov A (2018) Promising new therapeutic targets for regulation of inflammation and immunity: RING-type E3 ubiquitin ligases. Immunol Lett 202:44–51

    Article  PubMed  CAS  Google Scholar 

  43. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B et al (2014) Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21(9):803–809

    Article  PubMed  CAS  Google Scholar 

  44. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2(8):589–594

    Article  PubMed  CAS  Google Scholar 

  45. Yoshimi R, Ishigatsubo Y, Ozato K (2012) Autoantigen TRIM21/Ro52 as a possible target for treatment of systemic lupus erythematosus. Int J Rheumatol 2012:718237. https://doi.org/10.1155/2012/718237

  46. Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M et al (2007) Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res 67(4):1783–1792

    Article  PubMed  CAS  Google Scholar 

  47. Badros A, Goloubeva O, Dalal JS, Can I, Thompson J, Rapoport AP et al (2007) Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110(5):1042–1049

    Article  PubMed  CAS  Google Scholar 

  48. Ferrington DA, Gregerson DS (2012) Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci 109:75–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T et al (2012) Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 64(2):493–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15(7):781–787

    Article  PubMed  CAS  Google Scholar 

  51. Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ (2010) Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J Immunol 185(1):634–641

    Article  PubMed  CAS  Google Scholar 

  52. Perl A (2016) Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol 12(3):169–182

    Article  PubMed  CAS  Google Scholar 

  53. Reddy PS, Legault HM, Sypek JP, Collins MJ, Goad E, Goldman SJ et al (2008) Mapping similarities in mTOR pathway perturbations in mouse lupus nephritis models and human lupus nephritis. Arthritis Res Ther 10(6):R127

    Article  PubMed  PubMed Central  Google Scholar 

  54. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11(1–2):32–50

    Article  PubMed  CAS  Google Scholar 

  55. Lai ZW, Kelly R, Winans T, Marchena I, Shadakshari A, Yu J et al (2018) Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet 391(10126):1186–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR et al (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J et al (2015) mTORC1 and mTORC2 selectively regulate CD8+T cell differentiation. J Clin Invest 125(5):2090–108. https://doi.org/10.1172/JCI77746. Epub 2015 Apr 20. PMID: 25893604; PMCID: PMC4463194

  58. Murayama G, Chiba A, Kuga T, Makiyama A, Yamaji K, Tamura N et al (2020) Inhibition of mTOR suppresses IFNα production and the STING pathway in monocytes from systemic lupus erythematosus patients. Rheumatology (Oxford) 59(10):2992–3002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberta Hoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoi, A. (2021). Intracellular Targets in SLE. In: Hoi, A. (eds) Pathogenesis of Systemic Lupus Erythematosus. Springer, Cham. https://doi.org/10.1007/978-3-030-85161-3_8

Download citation

Publish with us

Policies and ethics