Skip to main content

Features Selection for Fall Detection Systems Based on Machine Learning and Accelerometer Signals

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12862))

Included in the following conference series:

  • 927 Accesses

Abstract

Fall among older people is a major medical concern. Fall Detection Systems (FDSs) have been actively investigated to solve this problem. In this sense, FDSs must effectively reduce both the rates of false alarms and unnoticed fall. In this work we carry out a systematic evaluation of the performance of one of the most widely used machine learning supervised algorithm (Support Vector Machine) when using different input features. To evaluate the impact of the feature selection, we use Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC) Curve as the performance metric. The results showed that with four features it is possible to obtain acceptable values for the detection of falls using accelerometer signals obtained from the user’s waist. In addition, we also investigate if the impact of selecting the features based on the analysis of a dataset different from the final application framework where the detector will be operative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshida, S.: A global report on falls prevention epidemiology of falls. World Health Organization (2007)

    Google Scholar 

  2. Stevens, J.A., Corso, P.S., Finkelstein, E.A.: The costs of fatal and nonfatal falls among older adults. Inj. Prev. 12, 290–295 (2006)

    Google Scholar 

  3. Vallabh, P., Malekian, R.: Fall detection monitoring systems: a comprehensive review. J. Ambient. Intell. Humaniz. Comput. 9(6), 1809–1833 (2017). https://doi.org/10.1007/s12652-017-0592-3

    Article  Google Scholar 

  4. Yacchirema, D., de Puga, J.S., Palau, C., Esteve, M.: Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquitous Comput. 23(5), 801–817 (2019)

    Article  Google Scholar 

  5. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12(1), 66 (2013)

    Article  Google Scholar 

  6. Ramachandran, A., Karuppiah, A.: A survey on recent advances in wearable fall detection systems. BioMed Research International, vol. 2020. Hindawi Limited (2020)

    Google Scholar 

  7. Rastogi, S., Singh, J.: A systematic review on machine learning for fall detection system. Comput. Intell. 4, 1–24 (2021)

    Google Scholar 

  8. Hou, M., Wang, H., Xiao, Z., Zhang, G.: An SVM fall recognition algorithm based on a gravity acceleration sensor. Syst. Sci. Control Eng. 6(3), 208–214, September 2018

    Google Scholar 

  9. Aziz, O., Musngi, M., Park, E.J., Mori, G., Robinovitch, S.N.: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 55(1), 45–55 (2016). https://doi.org/10.1007/s11517-016-1504-y

    Article  Google Scholar 

  10. Zhang, T., Wang, J., Xu, L., Liu, P.: Fall Detection by Wearable Sensor and One-Class SVM Algorithm, pp. 858–863. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/978-3-540-37258-5_104

    Book  MATH  Google Scholar 

  11. Salgado, P., Afonso, P.: Body Fall Detection with Kalman Filter and SVM, pp. 407–416. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10380-8_39

    Book  Google Scholar 

  12. Medrano, C., Igual, R., Plaza, I., Castro, M.: Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS One 9(4), e94811 (2014)

    Google Scholar 

  13. Santoyo-Ramón, J., Casilari, E., Cano-García, J., Santoyo-Ramón, J.A., Casilari, E., Cano-García, J.M.: Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection with supervised learning. Sensors 18(4), 1155, April 2018

    Google Scholar 

  14. Santoyo-Ramón, J.A., Casilari-Pérez, E., Cano-García, J.M.: Study of the detection of falls using the svm algorithm, different datasets of movements and ANOVA. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds.) IWBBIO 2019. LNCS, vol. 11465, pp. 415–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17938-0_37

    Chapter  Google Scholar 

  15. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Analysis of public datasets for wearable fall detection systems. Sensors (Switzerland), 17(7),  1513, July 2017

    Google Scholar 

  16. Sucerquia, A., López, J.D., Vargas-bonilla, J.F.: SisFall: a fall and movement dataset. Sensors 198(52), 1–14 (2017)

    Google Scholar 

  17. Özdemir, A.T.: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice. Sensors (Switzerland) 16(8), 1161 (2016)

    Google Scholar 

  18. Dewi, C., Chen, R-C:. Control, and undefined. Random forest and support vector machine on features selection for regression analysis. ijicic.org (2019)

    Google Scholar 

  19. sklearn.ensemble.RandomForestClassifier—scikit-learn 0.24.1 documentation. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html. Accessed 16 Apr 2021

  20. Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a Kinect® sensor. Sensors 14(2), 2756–2775 (2014)

    Article  Google Scholar 

  21. Martínez-Villaseñor, L., Ponce, H., Espinosa-Loera, R.A.: Multimodal database for human activity recognition and fall detection. In: Proceedings of the 12th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2018), vol. 2, no. 19 (2018)

    Google Scholar 

  22. Saleh, M., Abbas, M., Le Jeannes, R.B.: FallAllD: an open dataset of human falls and activities of daily living for classical and deep learning applications. IEEE Sens. J. 21(2), 1849–1858 (2021)

    Article  Google Scholar 

  23. Frank, K., Vera Nadales, M.J., Robertson, P., Pfeifer, T.: Bayesian recognition of motion related activities with inertial sensors. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 445–446 (2010)

    Google Scholar 

  24. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  25. Klenk, J., et al.: The FARSEEING real-world fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls. Eur. Rev. Aging Phys. Act. 13(1), 8, December 2016

    Google Scholar 

  26. Ahmed, M., Mehmood, N., Nadeem, A., Mehmood, A., Rizwan, K.: Fall detection system for the elderly based on the classification of shimmer sensor prototype data. Healthc. Inform. Res. 23(3), 147–158 (2017)

    Article  Google Scholar 

  27. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: On the heterogeneity of existing repositories of movements intended for the evaluation of fall detection systems. J. Healthc. Eng. 2020, 6622285 (2020)

    Article  Google Scholar 

  28. sklearn.preprocessing.scale—scikit-learn 0.24.1 documentation. https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html. Accessed 19 Apr 2021

  29. Version 0.23.2—scikit-learn 0.24.1 documentation. https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-1. Accessed 16 Apr 2021

  30. sklearn.model_selection.GridSearchCV—scikit-learn 0.24.1 documentation. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html. Accessed 16 Apr 2021

  31. Clasificación: ROC y AUC | Curso intensivo de aprendizaje automático. https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=es-419. Accessed 19 Apr 2021

Download references

Funding

Research presented in this article has been partially funded by FEDER Funds (under grant UMA18-FEDERJA-022), Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tech and Asociación Universitaria Iberoamericana de Postgrado (AUIP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Silva , Rodolfo García−Bermúdez or Eduardo Casilari .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

A. Silva, C., García−Bermúdez, R., Casilari, E. (2021). Features Selection for Fall Detection Systems Based on Machine Learning and Accelerometer Signals. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics