Skip to main content

Deep Convolutional Neural Networks with Residual Blocks for Wafer Map Defect Pattern Recognition

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12861))

Included in the following conference series:

  • 1246 Accesses

Abstract

Different deep convolution neural network (DCNN) models have been proposed for wafer map pattern identification and classification tasks in previous studies. However, factors such as the effect of input image resolution on the classification performance of the proposed models and class imbalance in the training set after splitting the data into training and test sets have not been considered in the previous studies. This study proposes a DCNN model with residual blocks, called Opt-ResDCNN model, for wafer map defect pattern identification and classification by considering 26 * 26 input image resolutions and class imbalance issues during the model training. The proposed model is compared with the previously published defect pattern recognition and classification models in terms of accuracy, precision, recall, and F1 score for 26 * 26 input image size. Using a publicly available wafer map dataset (WM-811K), the proposed method can obtain an average accuracy, precision, recall, and F1 score results of 99.672%, 99.664%, 99.695%, 99.692%, respectively for the 26 * 26 input image resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, R., Chen, N.: Defect pattern recognition on wafers using convolutional neural networks. Qual. Reliab. Eng. Int. 36(4), 1245–1257 (2020). https://doi.org/10.1002/qre.2627

    Article  Google Scholar 

  2. Gleason, S.S., Tobin Jr., K.W., Karnowski, T.P., Lakhani, F.: Rapid yield learning through optical defect and electrical test analysis. In: 23rd Annual International Symposium on Microlithography, pp.232–242. SPIE, Santa Clara, CA, United States (1998). https://doi.org/10.1117/12.308731

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.1109/CVPR.2016.90

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE, Honolulu, HI, USA (2017). https://doi.org/10.1109/CVPR.2017.243

  5. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  6. Wu, M.-J., Jang, R.J.-S., Chen, J.-L.: Wafer map failure pattern recognition and similarity ranking for large-scale data sets. IEEE Trans. Semicond. Manuf. 28(1), 1–12 (2015). https://doi.org/10.1109/TSM.2014.2364237

    Article  CAS  Google Scholar 

  7. Shawon, A., Faruk, O.M., Bin Habib, M., Khan, M.A.: Silicon wafer map defect classification using deep convolutional neural network with data augmentation. In: IEEE 5th International Conference on Computer and Communications (ICCC), IEEE, Chengdu, China (2019). https://doi.org/10.1109/ICCC47050.2019.9064029

  8. Yu, J., Zheng, X., Liu, J.: Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map. Comput. Ind. 109, 121–133 (2019). https://doi.org/10.1016/j.compind.2019.04.015

    Article  Google Scholar 

  9. Wang, J., Yang, Z., Zhang, J., Zhang, Q., Chien, K.W.-T.: AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition. IEEE Trans. Semicond. Manuf. 32(3), 310–319 (2019). https://doi.org/10.1109/TSM.2019.2925361

    Article  Google Scholar 

  10. Yu, J., Liu, J.: Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection. IEEE Trans. Ind. Electron. (Early Access) (2021). https://doi.org/10.1109/TIE.2020.3013492

    Article  Google Scholar 

  11. Ji, Y., Lee, J.-H.: Using GAN to improve CNN performance of wafer map defect type classification: yield enhancement. In: 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp.1–6. IEEE, Saratoga Springs, NY, USA (2020). https://doi.org/10.1109/ASMC49169.2020.9185193

  12. Jin, C.H., Kim, H.-J., Piao, Y., Li, M., Piao, M.: Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes. J. Intell. Manuf. 31(8), 1861–1875 (2020). https://doi.org/10.1007/s10845-020-01540-x

    Article  Google Scholar 

  13. Tsai, T.-H., Lee, Y.-C.: A light-weight neural network for wafer map classification based on data augmentation. IEEE Trans. Semicond. Manuf. 33(4), 663–672 (2020). https://doi.org/10.1109/TSM.2020.3013004

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Identity Mappings in Deep Residual Networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  15. Maksim K., et al.: Classification of wafer maps defect based on deep learning methods with small amount of data. In: International Conference on Engineering and Telecommunication (EnT), pp. 1–5. IEEE, Dolgoprudny, Russia (2019). https://doi.org/10.1109/EnT47717.2019.9030550

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representation, pp.1–14. ICLR, (2015).arXiv:1409.1556, 2014 - arxiv.org

  17. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: Computer Vision and Pattern Recognition, pp. 1–9 (2017). arxiv.org/abs/1704.04861

    Google Scholar 

  18. Shen, Z., Yu, J.: Wafer map defect recognition based on deep transfer learning. In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1568–1572. IEEE, Macao, China (2019). https://doi.org/10.1109/IEEM44572.2019.8978568

  19. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  20. Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: IEEE International Conference on Image Processing (ICIP), pp. 3713–3717. IEEE, Phoenix, AZ, USA (2016). https://doi.org/10.1109/ICIP.2016.7533053

  21. Pouyanfar S., et al.: Dynamic sampling in convolutional neural networks for imbalanced data classification. In: IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 112–117. IEEE, Miami, FL, USA (2018). https://doi.org/10.1109/MIPR.2018.00027

  22. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018). https://doi.org/10.1016/j.neunet.2018.07.011

    Article  PubMed  Google Scholar 

  23. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: International Joint Conference on Neural Networks (IJCNN), pp. 4368–4374. IEEE, Vancouver, BC, Canada ( 2016). https://doi.org/10.1109/IJCNN.2016.7727770

  24. Khan, S.H., Hayat, M., Bennamoun, M., Sohei, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Networks Learn. Syst. 29(8), 3573–3587 (2018). https://doi.org/10.1109/TNNLS.2017.2732482

    Article  Google Scholar 

  25. Wang, H., Cui, Z., Chen, Y., Avidan, M., Ben, A.A., Kronzer, A.: Predicting hospital readmission via cost-sensitive deep learning. IEEE/ACM Trans. Comput. Biol. Bioinforma. 15(6), 1968–1978 (2018). https://doi.org/10.1109/TCBB.2018.2827029

    Article  Google Scholar 

  26. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.5375–5384. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.1109/CVPR.2016.580

  27. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007. IEEE, Venice, Italy (2017). https://doi.org/10.1109/ICCV.2017.324

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amogne, Z.E., Wang, FK., Chou, JH. (2021). Deep Convolutional Neural Networks with Residual Blocks for Wafer Map Defect Pattern Recognition. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics