Skip to main content

Polymer for Biomedical Applications

  • Chapter
  • First Online:
Essentials of Industrial Pharmacy

Abstract

The structure of a polymer depends entirely on its monomer. Polymers are broadly classified into two main groups, natural and synthetic, depending on the source from which they are derived. Polymers have made a name for themselves in all areas of science and especially in the biomedical field due to their wide range of applications. Among the numerous polymers, biopolymers have attracted the attention of the scientific community mainly because of their biocompatible and biodegradable properties. In this chapter, we have summarized information about polymers, their classification, and last but not least, their potential biomedical applications. This will help students to understand the basic concepts related to polymers and especially biopolymers and their potential application in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Post W, Susa A, Blaauw R, Molenveld K, Knoop RJI. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polymer Reviews. 2020;60(2):359-88.

    Article  CAS  Google Scholar 

  2. Haider A, Haider S, Kummara MR, Kamal T, Alghyamah A-AA, Iftikhar FJ, et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. Journal of Saudi chemical society. 2020;24(2):186-215.

    Article  CAS  Google Scholar 

  3. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2018;11(8):1165-88.

    Article  CAS  Google Scholar 

  4. Staudinger H. Über polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series). 1920;53(6):1073-85.

    Article  Google Scholar 

  5. Haider S, Kamal T, Khan SB, Omer M, Haider A, Khan FU, et al. Natural polymers supported copper nanoparticles for pollutants degradation. Applied Surface Science. 2016;387:1154-61.

    Article  CAS  Google Scholar 

  6. Haider A, Haider S, Kang I-K, Kumar A, Kummara MR, Kamal T, et al. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. International journal of biological macromolecules. 2018;108:455-61.

    Article  CAS  Google Scholar 

  7. Saldívar-Guerra E, Vivaldo-Lima E. Introduction to Polymers and Polymer Types. Handbook of Polymer Synthesis, Characterization, and Processing. 2013:1-14.

    Google Scholar 

  8. Rao KM, Kumar A, Haider A, Han SS. Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Materials Letters. 2016;184:189-92.

    Article  CAS  Google Scholar 

  9. Shokri J, Adibkia K. Application of cellulose and cellulose derivatives in pharmaceutical industries. Cellulose-medical, pharmaceutical and electronic applications: IntechOpen; 2013.

    Google Scholar 

  10. Kharkwal H, Malhotra B, Janaswamy S. 1 natural polymers for drug delivery: an introduction. 2017.

    Book  Google Scholar 

  11. Olatunji O. Classification of natural polymers. Natural Polymers: Springer; 2016. p. 1-17.

    Book  Google Scholar 

  12. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al. Novel functional antimicrobial and biocompatible arabinoxylan/guar gum hydrogel for skin wound dressing applications. Journal of Tissue Engineering and Regenerative Medicine. 2020;14(10):1488-501.

    Article  CAS  Google Scholar 

  13. Arif U, Haider S, Haider A, Khan N, Alghyamah AA, Jamila N, et al. Biocompatible polymers and their potential biomedical applications: A review. Current pharmaceutical design. 2019;25(34):3608-19.

    Article  CAS  Google Scholar 

  14. Hocking PJ. The classification, preparation, and utility of degradable polymers. Journal of Macromolecular Science, Part C: Polymer Reviews. 1992;32(1):35-54.

    Article  Google Scholar 

  15. Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology. 2015;1(3):161-76.

    Article  Google Scholar 

  16. Parisi OI, Curcio M, Puoci F. Polymer chemistry and synthetic polymers. Advanced Polymers in Medicine: Springer; 2015. p. 1-31.

    Google Scholar 

  17. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev. 2016;116(4):2602-63.

    Article  CAS  Google Scholar 

  18. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced drug delivery reviews. 2007;59(14):1413-33.

    Article  CAS  Google Scholar 

  19. Wei G, Ma PX. Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials. 2009;30(32):6426-34.

    Article  CAS  Google Scholar 

  20. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. International Journal of nanomedicine. 2006;1(1):15.

    Article  CAS  Google Scholar 

  21. Ma PX. Biomimetic materials for tissue engineering. Advanced drug delivery reviews. 2008;60(2):184-98.

    Article  CAS  Google Scholar 

  22. Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials. 1999;46(1):60-72.

    Article  CAS  Google Scholar 

  23. Lee T-J, Kang S-W, Bhang SH, Kang JM, Kim B-S. Apatite-coated porous poly (lactic-co-glycolic acid) microspheres as an injectable bone substitute. Journal of Biomaterials Science, Polymer Edition. 2010;21(5):635-45.

    Article  CAS  Google Scholar 

  24. Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature materials. 2011;10(5):398-406.

    Article  Google Scholar 

  25. Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Science China Chemistry. 2014;57(4):490-500.

    Article  CAS  Google Scholar 

  26. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32(36):9622-9.

    Article  CAS  Google Scholar 

  27. Zhang R, Ma PX. Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials. 1999;44(4):446-55.

    Article  CAS  Google Scholar 

  28. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert review of medical devices. 2005;2(3):303-17.

    Article  CAS  Google Scholar 

  29. Lei B, Shin K-H, Noh D-Y, Jo I-H, Koh Y-H, Choi W-Y, et al. Nanofibrous gelatin–silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. Journal of Materials Chemistry. 2012;22(28):14133-40.

    Article  CAS  Google Scholar 

  30. Naeem M, Bae J, Oshi MA, Kim M-S, Moon HR, Lee BL, et al. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. International journal of nanomedicine. 2018;13:1225.

    Article  CAS  Google Scholar 

  31. Naeem M, Lee J, Oshi MA, Cao J, Hlaing SP, Im E, et al. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomaterialia. 2020;116:368-82.

    Article  CAS  Google Scholar 

  32. Naeem M, Awan UA, Subhan F, Cao J, Hlaing SP, Lee J, et al. Advances in colon-targeted nano-drug delivery systems: Challenges and solutions. Archives of pharmacal research. 2020;43(1):153-69.

    Article  CAS  Google Scholar 

  33. Haider A, Versace D-l, Gupta KC, Kang I-K. Pamidronic acid-grafted nHA/PLGA hybrid nanofiber scaffolds suppress osteoclastic cell viability and enhance osteoblastic cell activity. Journal of Materials Chemistry B. 2016;4(47):7596-604.

    Article  CAS  Google Scholar 

  34. Haider A, Kim S, Huh M-W, Kang I-K. BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth. BioMed research international. 2015;2015.

    Google Scholar 

  35. Haider A, Gupta KC, Kang I-K. PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration. Nanoscale research letters. 2014;9(1):1-12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Haider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riasat, I. et al. (2022). Polymer for Biomedical Applications. In: Khan, S.A. (eds) Essentials of Industrial Pharmacy. AAPS Advances in the Pharmaceutical Sciences Series, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-030-84977-1_15

Download citation

Publish with us

Policies and ethics