Skip to main content

Fundamental Concepts in Gaseous Electronics

  • Reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

It is beyond the scope of this book to even attempt a comprehensive treatment of fundamental concepts of gaseous electronics, which experienced immense growth during and after the Second World War. In this chapter the fundamentals behind the generation, loss, and motion of charge carriers are discussed. This is followed by a review of thermal excitation and ionization, definition of the plasma state, quasi-neutrality, and plasma sheaths. For a comprehensive treatment of the subject, the reader is referred to a number of books (Capitelli et al. 2012; Finkelnburg and Maecker 1956; Griem 1964; Gupta 2007; Huddlestone and Leonard 1965; Lee et al. 1973; Lochte-Holtgreven 1995; Massey et al. 1969; Mitchner and Kruger 1973; Müller and Weiss 2005; Reif 2009) that may be considered classics in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

CTE:

Complete thermodynamic equilibrium

CLTE:

Complete local thermodynamic equilibrium

DC:

Direct current

LTE:

Local thermodynamic equilibrium

PLTE:

Partial local thermodynamic equilibrium

RF:

Radio frequency

References

  • Allis WP (1956) Motion of ions and electrons. In: Encyclopedia of physics, vol 21. Springer, Berlin

    Google Scholar 

  • Cambel AB (1963) Plasma physics and magnetofluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Capitelli M, Colonna G, D’Angola A (2012) Fundamental aspects of plasma chemical physics thermodynamics, vol 66, Springer series on atomic, optical, and plasma physics. Springer, New York

    Book  Google Scholar 

  • Delalondre C (1990) Modélisation aérothermodynamique d’arcs électroniques à forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode. Ph.D. thesis, University of Rouen

    Google Scholar 

  • Drawin HW (1970) Spectroscopic measurement of high temperatures (a review). High Temp High Pressures 2:359

    Google Scholar 

  • Finkelnburg W, Maecker H (1956) Elektrische Bôgen und thermisches Plasma. In: Flügge S (ed) Encyclopedia of physics, vol 23. Springer, Berlin

    Google Scholar 

  • Griem HR (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  • Gupta MC (2007) Statistical thermodynamics. Amazon, p 528

    Google Scholar 

  • Gvosdover SD (1937) Phys Z Sov 12:164

    Google Scholar 

  • Huddlestone RH, Leonard SL (eds) (1965) Plasma diagnostic techniques. Academic, New York, p 627

    Google Scholar 

  • Hutchinson IH (2002) Principles of plasma diagnostics, 2nd edn. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Laurandeau NM (2005) Statistical thermodynamics: fundamentals and applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Lee JF, Sears FW, Turcotte DL (1973) Statistical thermodynamics, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Lochte-Holtgreven W (ed) (1995) Plasma diagnostics. AIP Press, New York, p 928

    Google Scholar 

  • Loeb LB (1961) Basic processes of gaseous electronics. University of California Press, Berkeley/Los Angeles

    MATH  Google Scholar 

  • Massey HSW, Burhop EHS, Gilbody HB (1969) Electronic and ionic impact phenomena, vol 4, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Mitchner M, Kruger CH Jr (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  • Müller I, Weiss W (2005) Entropy and energy: a universal competition. Springer, Berlin

    MATH  Google Scholar 

  • Reif F (2009) Fundamentals of statistical and thermal physics. Waveland Press, Long Grove, p 651

    Google Scholar 

  • Schmidt G (1979) Physics of high temperature plasmas, 2nd edn. Academic, New York

    Google Scholar 

  • Uman MA (1964) Introduction to plasma physics. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2023). Fundamental Concepts in Gaseous Electronics. In: Boulos, M.I., Fauchais, P.L., Pfender, E. (eds) Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-030-84936-8_4

Download citation

Publish with us

Policies and ethics