Skip to main content

Glossopharyngeal (CN IX) and Hypoglossal (CN XII) Nerve Stimulation and Monitoring

  • Chapter
  • First Online:
Intraoperative Cranial Nerve Monitoring in Otolaryngology-Head and Neck Surgery
  • 580 Accesses

Abstract

The glossopharyngeal nerve (CN IX) has primarily sensory function but does innervate the stylopharyngeus muscle which is involved with elevating the larynx and dilating the pharynx during swallowing. Of the lower cranial nerves with motor function, the glossopharyngeal is less commonly identified during head and neck surgery but may be selectively stimulated and monitored during skull base and/or neurosurgery. The nerve can be monitored intraorally with electrodes in or along the soft palate or posterior pharyngeal wall and requires co-monitoring of the vagus (CN X) to identify selective glossopharyngeal stimulation. Reduction in the ratio of glossopharyngeal to vagal amplitude is associated with soft palate dysfunction, dysphagia, and loss of gag reflex.

The hypoglossal nerve (CN XII) provides primary motor innervation to the tongue, and its function is critical for speaking, swallowing, and maintenance of the oropharyngeal airway. The hypoglossal nerve has traditionally been vulnerable to injury during surgery of the tongue and upper neck including head and neck cancers, hypoglossal to facial nerve anastomosis, tumors of the jugular foramen, and carotid endarterectomy. Hypoglossal nerve stimulation and monitoring have successfully been used selectively for nerve identification and preservation in some of these cases. More recently, hypoglossal nerve stimulation and monitoring have become critical for distal nerve branch identification to facilitate accurate cuff electrode placement for hypoglossal nerve stimulator implantation to treat obstructive sleep apnea, involving both children and adults. Perhaps in no other surgery involving the lower cranial motor nerves are direct surgeon stimulation and EMG monitoring of the various branches of the nerve more critical to the successful outcome of surgery. The microsurgical dissection requires a bipolar nerve stimulator due to the precision necessary for this procedure. Failure to include the branches to the genioglossus muscle (which protrudes the tongue) and/or failure to exclude the branches to the styloglossus and hyoglossus muscles (which retract the tongue) within the cuff electrode will result in failure to improve obstructive sleep apnea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozveren MF, Türe U, Ozek MM, Pamir MN. Anatomic landmarks of the glossopharyngeal nerve: a microsurgical anatomic study. Neurosurgery. 2003;52(6):1400–10.

    Article  Google Scholar 

  2. Ozveren MF, Türe U. The microsurgical anatomy of the glossopharyngeal nerve with respect to the jugular foramen lesions. Neurosurg Focus. 2004;17(2):E3.

    Article  Google Scholar 

  3. Lai PF, Wu X, Lan SH, Tang B, Huang HY, Hong T. Anatomical study of a surgical approach through the neck to the jugular foramen under endoscopy. Surg Radiol Anat. 2020; https://doi.org/10.1007/s00276-020-02574-9.

  4. Singh R, Husain AM. Neurophysiologic intraoperative monitoring of the glossopharyngeal and vagus nerves. J Clin Neurophysiol. 2011;28(6):582–6.

    Article  Google Scholar 

  5. Fukuda M, Takao T, Hiraishi T, Yajima N, Saito A, Fujii Y. Novel devices for intraoperative monitoring of glossopharyngeal and vagus nerves during skull base surgery. Surg Neurol Int. 2013;4:97.

    Article  Google Scholar 

  6. Kullmann M, Tatagiba M, Liebsch M, Feigl GC. Evaluation of the predictive value of intraoperative changes in motor-evoked potentials of caudal cranial nerves for the postoperative functional outcome. World Neurosurg. 2016;95:329–34.

    Article  Google Scholar 

  7. Zhang W, Chen M, Zhang W, Chai Y. Use of electrophysiological monitoring in selective rhizotomy treating glossopharyngeal neuralgia. J Craniomaxillofac Surg. 2014;42(5):e182–5.

    Article  Google Scholar 

  8. Mu L, Sanders I. Human tongue neuroanatomy: nerve supply and motor endplates. Clin Anat. 2010;23:777–91.

    Article  Google Scholar 

  9. Iaconetta G, Solari D, Villa A, Castaldo C, Gerardi RM, Califano G, Montagnani S, Cappabianca P. The hypoglossal nerve: anatomical study of its entire course. World Neurosurg. 2018;109:e486–92.

    Article  Google Scholar 

  10. Delaey P, Duisit J, Behets C, Duprez T, Gianello P, Lengelé B. Specific branches of hypoglossal nerve to genioglossus muscle as a potential target of selective neurostimulation in obstructive sleep apnea: anatomical and morphometric study. Surg Radiol Anat. 2017;39(5):507–15.

    Article  Google Scholar 

  11. Bassiri Gharb B, Tadisina KK, Rampazzo A, Hashem AM, Elbey H, Kwiecien GJ, Doumit G, Drake RL, Papay F. Microsurgical anatomy of the terminal hypoglossal nerve relevant for neurostimulation in obstructive sleep apnea. Neuromodulation. 2015;18(8):721–8.

    Article  Google Scholar 

  12. Yigit E, Dursun E, Omeroglu E, Sunter AV, Edizer DT, Terzi S, Coskun ZO, Demirci M. The course of lower cranial nerves within the neck: a cadaveric dissection study. Eur Arch Otorhinolaryngol. 2018;275(10):2541–8.

    Article  Google Scholar 

  13. Kikuta S, Jenkins S, Kusukawa J, Iwanaga J, Loukas M, Tubbs RS. Ansa cervicalis: a comprehensive review of its anatomy, variations, pathology, and surgical applications. Anat Cell Biol. 2019;52(3):221–5.

    Article  Google Scholar 

  14. Vacher C, Caix P. Anatomie du couple nerf hypoglosse, anse cervicale [Anatomy of the hypoglossal nerve and the hypoglossal ansa cervicalis]. Rev Stomatol Chir Maxillofac. 2004;105(3):160–4.

    Article  CAS  Google Scholar 

  15. Manoli A, Ploumidou K, Georgopapadakos N, Stratzias P, Skandalakis PN, Angelis S, Apostolopoulos AP, Filippou DK. Hypoglossal nerve: anatomy, anatomical variations comorbidities and clinical significance. J Long-Term Eff Med Implants. 2019;29(3):197–203.

    Article  Google Scholar 

  16. Kim SY, Im HW, Choi YD, Kim K, Kim JW, Kim YH, Seo HG. Intraoperative monitoring of hypoglossal nerve using hypoglossal motor evoked potential in infratentorial tumor surgery: a report of two cases. Ann Rehabil Med. 2018;42(2):352–7.

    Article  Google Scholar 

  17. Walshe P, Shandilya M, Rowley H, Zahirovich A, Walsh RM, Walsh M, Timon C. Use of an intra-operative nerve stimulator in identifying the hypoglossal nerve. J Laryngol Otol. 2006;120(3):185–7.

    Article  Google Scholar 

  18. Kojima A, Saga I, Ishikawa M. Intraoperative hypoglossal nerve mapping during carotid endarterectomy: technical note. World Neurosurg. 2018;113:249–53.

    Article  Google Scholar 

  19. Skinner SA. Neurophysiologic monitoring of the spinal accessory nerve, hypoglossal nerve, and the spinomedullary region. J Clin Neurophysiol. 2011;28(6):587–98.

    Article  Google Scholar 

  20. Duque CS, Londoño AF, Penagos AM, Urquijo DP, Dueñas JP. Hypoglossal nerve monitoring, a potential application of intraoperative nerve monitoring in head and neck surgery. World J Surg Oncol. 2013;11:225. https://doi.org/10.1186/1477-7819-11-225.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Strollo PJ Jr, Soose RJ, Maurer JT, de Vries N, Cornelius J, Froymovich O, Hanson RD, Padhya TA, Steward DL, Gillespie MB, Woodson BT, Van de Heyning PH, Goetting MG, Vanderveken OM, Feldman N, Knaack L, Strohl KP, STAR Trial Group. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370(2):139–49.

    Article  CAS  Google Scholar 

  22. Woodson BT, Gillespie MB, Soose RJ, Maurer JT, de Vries N, Steward DL, Baskin JZ, Padhya TA, Lin HS, Mickelson S, Badr SM, Strohl KP, Strollo PJ Jr, STAR Trial Investigators. Randomized controlled withdrawal study of upper airway stimulation on OSA: short- and long-term effect. Otolaryngol Head Neck Surg. 2014;151(5):880–7.

    Article  Google Scholar 

  23. Woodson BT, Strohl KP, Soose RJ, Gillespie MB, Maurer JT, de Vries N, Padhya TA, Badr MS, Lin HS, Vanderveken OM, Mickelson S, Strollo PJ Jr. Upper airway stimulation for obstructive sleep apnea: 5-year outcomes. Otolaryngol Head Neck Surg. 2018;159(1):194–202.

    Article  Google Scholar 

  24. Caloway CL, Diercks GR, Keamy D, de Guzman V, Soose R, Raol N, Shott SR, Ishman SL, Hartnick CJ. Update on hypoglossal nerve stimulation in children with Down syndrome and obstructive sleep apnea. Laryngoscope. 2020;130(4):E263–7.

    Article  Google Scholar 

  25. Diercks GR, Wentland C, Keamy D, Kinane TB, Skotko B, de Guzman V, Grealish E, Dobrowski J, Soose R, Hartnick CJ. Hypoglossal nerve stimulation in adolescents with down syndrome and obstructive sleep apnea. JAMA Otolaryngol Head Neck Surg. 2018;144(1):37–42.

    PubMed  Google Scholar 

  26. Heiser C, Knopf A, Hofauer B. Surgical anatomy of the hypoglossal nerve: a new classification system for selective upper airway stimulation. Head Neck. 2017;39(12):2371–80.

    Article  Google Scholar 

  27. Heiser C, Maurer JT, Steffen A. Functional outcome of tongue motions with selective hypoglossal nerve stimulation in patients with obstructive sleep apnea. Sleep Breath. 2016;20(2):553–60.

    Article  CAS  Google Scholar 

  28. Zhu Z, Hofauer B, Heiser C. Improving surgical results in complex nerve anatomy during implantation of selective upper airway stimulation. Auris Nasus Larynx. 2018;45(3):653–6.

    Article  Google Scholar 

  29. Steffen A, Kilic A, König IR, Suurna MV, Hofauer B, Heiser C. Tongue motion variability with changes of upper airway stimulation electrode configuration and effects on treatment outcomes. Laryngoscope. 2018;128(8):1970–6.

    Article  Google Scholar 

  30. Heiser C, Hofauer B, Lozier L, Woodson BT, Stark T. Nerve monitoring-guided selective hypoglossal nerve stimulation in obstructive sleep apnea patients. Laryngoscope. 2016;126(12):2852–8.

    Article  Google Scholar 

  31. Sturm JJ, Modik O, Suurna MV. Neurophysiological monitoring of tongue muscle activation during hypoglossal nerve stimulation. Laryngoscope. 2020;130(7):1836–43.

    Article  Google Scholar 

  32. Sturm JJ, Lee CH, Modik O, Suurna MV. Intraoperative identification of mixed activation profiles during hypoglossal nerve stimulation. J Clin Sleep Med. 2020;16(10):1769–74.

    Article  Google Scholar 

  33. Kumar AT, Vasconcellos A, Boon M, Huntley C. Inclusion of the first cervical nerve does not influence outcomes in upper airway stimulation for treatment of obstructive sleep apnea. Laryngoscope. 2020;130(5):E382–5.

    Article  CAS  Google Scholar 

  34. Heiser C, Thaler E, Boon M, Soose RJ, Woodson BT. Updates of operative techniques for upper airway stimulation. Laryngoscope. 2016;126 Suppl 7:S12–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Suurna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suurna, M.V., Steward, D.L. (2022). Glossopharyngeal (CN IX) and Hypoglossal (CN XII) Nerve Stimulation and Monitoring. In: Scharpf, J., Randolph, G.W. (eds) Intraoperative Cranial Nerve Monitoring in Otolaryngology-Head and Neck Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-84916-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84916-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84915-3

  • Online ISBN: 978-3-030-84916-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics