Skip to main content

Imaging in Renal Cancer

  • Chapter
  • First Online:
Renal Cancer

Abstract

Imaging modalities (ultrasonography, computed tomography and magnetic resonance imaging) are essential for the detection, characterization and staging of parenchymal renal masses. More recently, computed tomography (CT) and/or magnetic resonance imaging (MRI) were used also to define anatomical and topographic characteristics of renal tumors suitable for partial nephrectomy with the aim to estimate the different risk of postoperative complications.

Ultrasound is usually performed as the first line imaging modality and its diagnostic potential can be significantly improved through the injection of intravenous contrast medium (CEUS). However, CT scan is currently considered the gold standard due to the wide availability, the fast scan times, and the comprehensive evaluation. Moreover, dual-energy CT can add important information in terms of iodine highlighting and quantification. Finally, MRI can be successfully employed in this field, allowing the assessment of structure, enhancement and cellular density of renal masses.

According to imaging investigations, renal lesions are usually distinguished on the basis of their cystic or solid structure. Complex cystic lesions (Bosniak categories III and IV) are considered as malignant tumors. Solid tumors can present imaging characteristics able to identify benign from malignant tumors. Controversies still exist about the ability of CT scan and MRI to define appropriately the different histologic subtypes in the context of malignant tumors.

Technological advancement in this field is not over yet and other novelties are expected to further improve accuracy in radiological diagnosis within the next future. In this scenario, radiomics seems to be particularly interesting to increase the ability of traditional imaging investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kutikov A, Uzzo RG. The R.E.N.a.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182:844–53.

    Article  PubMed  Google Scholar 

  2. Ficarra V, Novara G, Secco S, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol. 2009;56:786–93.

    Article  PubMed  Google Scholar 

  3. Hindman NM. Imaging of cystic renal masses. Radiol Clin N Am. 2017 Mar;55(2):259–77.

    Article  PubMed  Google Scholar 

  4. Ascenti G, Mazziotti S, Zimbaro G, Settineri N, Magno C, Melloni D, Caruso R, Scribano E. Complex cystic renal masses: characterization with contrast-enhanced US. Radiology. 2007 Apr;243(1):158–65.

    Article  PubMed  Google Scholar 

  5. Albrecht T, Blomley M, Bolondi L, et al. Guidelines for the use of contrast agents in ultrasound: January 2004. Ultraschall Med. 2004;25:249–56.

    Article  CAS  PubMed  Google Scholar 

  6. Rossi SH, Prezzi D, Kelly-Morland C, Goh V. Imaging for the diagnosis and response assessment of renal tumours. World J Urol. 2018;36(12):1927–42. https://doi.org/10.1007/s00345-018-2342-3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sutherland EL, Choromanska A, Al-Katib S, Coffey M. Outcomes of ultrasound guided renal mass biopsies. J Ultrasound. 2018;21(2):99–104. https://doi.org/10.1007/s40477-018-0299-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol. 2019;75:799–810.

    Article  PubMed  Google Scholar 

  9. van Oostenbrugge TJ, Fütterer JJ, Mulders PFA. Diagnostic imaging for solid renal tumors: a pictorial review. Kidney Cancer. 2018 Aug 1;2(2):79–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Das CJ, Thingujam U, Panda A, Sharma S, Gupta AK. Perfusion computed tomography in renal cell carcinoma. World J Radiol. 2015 Jul 28;7(7):170–9. https://doi.org/10.4329/wjr.v7.i7.170.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chandarana H, Megibow AJ, Cohen BA, et al. Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. Am J Roentgenol. 2011;196:693–700.

    Article  Google Scholar 

  12. Kwon T, Jeong IG, Yoo S, Lee J, Hong S, You D, Hong JH, Ahn H, Kim CS. Role of MRI in indeterminate renal mass: diagnostic accuracy and impact on clinical decision making. Int Urol Nephrol. 2015 Apr;47(4):585–93.

    Article  PubMed  Google Scholar 

  13. Kay FU, Pedrosa I. Imaging of solid renal masses. Radiol Clin N Am. 2017 Mar;55(2):243–58.

    Article  PubMed  Google Scholar 

  14. Bosniak MA. The current radiological approach to renal cysts. Radiology. 1986;158(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Bosniak MA. The Bosniak renal cyst classification: 25 years later. Radiology. 2012 Mar;262(3):781–5.

    Article  PubMed  Google Scholar 

  16. Richard PO, Violette PD, Jewett MA, et al. CUA guideline on the management of cystic renal lesions. Can Urol Assoc J. 2017;11:E66–73.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sevcenco S, Spick C, Helbich TH, et al. Malignancy rates and diagnostic performance of the Bosniak classification for the diagnosis of cystic renal lesions in computed tomography–a systematic review and meta-analysis. Eur Radiol. 2017;27:2239–47.

    Article  PubMed  Google Scholar 

  18. Weibl P, Hora M, Kollarik B, et al. Management, pathology and outcomes of Bosniak category IIF and III cystic renal lesions. World J Urol. 2015;33:295–300.

    Article  PubMed  Google Scholar 

  19. Graumann O, Osther SS, Karstoft J, Hørlyck A, Osther PJ. Bosniak classification system: a prospective comparison of CT, contrast-enhanced US, and MR for categorizing complex renal cystic masses. Acta Radiol. 2016 Nov;57(11):1409–17.

    Article  PubMed  Google Scholar 

  20. Tappouni R, Kissane J, Sarwani N, Lehman EB. Pseudoenhancement of renal cysts: influence of lesion size, lesion location, slice thickness, and number of MDCT detectors. Am J Roentgenol. 2012;198(1):133–7.

    Article  Google Scholar 

  21. Song KD, Kim CK, Park BK, Kim B. Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT. Am J Roentgenol. 2011;197:6.

    Article  Google Scholar 

  22. Xue LY, Lu Q, Huang BJ, Ma JJ, Yan LX, Wen JX, Wang WP. Contrast-enhanced ultrasonography for evaluation of cystic renal mass: in comparison to contrast-enhanced CT and conventional ultrasound. Abdom Imaging. 2014 Dec;39(6):1274–83.

    Article  PubMed  Google Scholar 

  23. Ferreira AM, Reis RB, Kajiwara PP, Silva GE, Elias J Jr, Muglia VF. MRI evaluation of complex renal cysts using the Bosniak classification: a comparison to CT. Abdom Radiol (NY). 2016 Oct;41(10):2011–9.

    Article  PubMed  Google Scholar 

  24. Moch H, Cubilla AL, Humphrey PA, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs. Part a: renal, penile and testicular tumors. Eur Urol. 2016;70:93–105.

    Article  PubMed  Google Scholar 

  25. Ficarra V, Brunelli M, Cheng L, et al. Prognostic and therapeutic impact of the histopathologic definition of parenchymal epithelial renal tumors. Eur Urol. 2010;58:655–68.

    Article  PubMed  Google Scholar 

  26. Jinzaki M, Silverman SG, Akita H, Nagashima Y, Mikami S, Oya M. Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging. 2014;39(3):588–604.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ignee A, Straub B, Schuessler G, Dietrich CF. Contrast enhanced ultrasound of renal masses. World J Radiol. 2010 Jan 28;2(1):15–31.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mazziotti S, Zimbaro F, Pandolfo A, Racchiusa S, Settineri N, Ascenti G. Usefulness of contrast-enhanced ultrasonography in the diagnosis of renal pseudotumors. Abdom Imaging. 2010 Apr;35(2):241–5.

    Article  PubMed  Google Scholar 

  29. Oh TH, Lee YH, Seo IY. Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses. Korean J Urol. 2014 Sep;55(9):587–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li F, Bai M, Wu Y, He Y, Gu J, Xing J, Du L. Comparative diagnostic performance of contrast-enhanced ultrasound versus baseline ultrasound for renal pelvis lesions. Ultrasound Med Biol. 2015 Dec;41(12):3109–19.

    Article  PubMed  Google Scholar 

  31. Xue LY, Lu Q, Huang BJ, Li Z, Li CX, Wen JX, Wang WP. Papillary renal cell carcinoma and clear cell renal cell carcinoma: differentiation of distinct histological types with contrast - enhanced ultrasonography. Eur J Radiol. 2015 Oct;84(10):1849–56.

    Article  PubMed  Google Scholar 

  32. King KG, Gulati M, Malhi H, Hwang D, Gill IS, Cheng PM, Grant EG, Duddalwar VA. Quantitative assessment of solid renal masses by contrast-enhanced ultrasound with time-intensity curves: how we do it. Abdom Imaging. 2015 Oct;40(7):2461–71.

    Article  PubMed  Google Scholar 

  33. Gerst S, Hann LE, Li D, Gonen M, Tickoo S, Sohn MJ, Russo P. Evaluation of renal masses with contrast-enhanced ultrasound: initial experience. AJR Am J Roentgenol. 2011 Oct;197(4):897–906.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salameh JP, McInnes MDF, McGrath TA, Salameh G, Schieda N. Diagnostic accuracy of dual-energy CT for evaluation of renal masses: systematic review and meta-analysis. Am J Roentgenol. 2019;212(4):W100–5.

    Article  Google Scholar 

  35. Schabel C, Patel B, Harring S, Duvnjak P, Ramírez-Giraldo JC, Nikolaou K, Nelson RC, Farjat AE, Marin D. Renal lesion characterization with spectral CT: determining the optimal energy for virtual Monoenergetic reconstruction. Radiology. 2018;287(3):874–83.

    Article  PubMed  Google Scholar 

  36. Wortman JR, Shyu JY, Fulwadhva UP, Sodickson AD. Impact analysis of the routine use of dual-energy computed tomography for characterization of incidental renal lesions. J Comput Assist Tomogr. 2019 Mar/Apr;43(2):176–82.

    Article  PubMed  Google Scholar 

  37. Zarzour JG, Milner D, Valentin R, Jackson BE, Gordetsky J, West J, Rais-Bahrami S, Morgan DE. Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom Radiol. 2017 Mar;42(3):727–34.

    Article  Google Scholar 

  38. Kaza RK, Ananthakrishnan L, Kambadakone A, Platt JF. Update of dual-energy CT applications in the genitourinary tract. AJR. 2017;208(6):1185–92.

    Article  PubMed  Google Scholar 

  39. Low G, Huang G, Fu W, Moloo Z, Girgis S. Review of renal cell carcinoma and its common subtypes in radiology. World J Radiol. 2016 May 28;8(5):484–500.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mazzei FG, Mazzei MA, Cioffi Squitieri N, Pozzessere C, Righi L, Cirigliano A, Guerrini S, D'Elia D, Ambrosio MR, Barone A, del Vecchio MT, Volterrani L. CT perfusion in the characterisation of renal lesions: an added value to multiphasic CT. Biomed Res Int. 2014;2014:135013.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cornelis F, Grenier N. Multiparametric magnetic resonance imaging of solid renal tumors: a practical algorithm. Semin Ultrasound CT MR. 2017 Feb;38(1):47–58.

    Article  PubMed  Google Scholar 

  42. Lopes Vendrami C, Parada Villavicencio C, DeJulio TJ, Chatterjee A, Casalino DD, Horowitz JM, Oberlin DT, Yang GY, Nikolaidis P, Miller FH. Differentiation of solid renal tumors with multiparametric MR imaging. Radiographics. 2017;37(7):2026–42.

    Article  PubMed  Google Scholar 

  43. Lanzman RS, Robson PM, Sun MR, Patel AD, Mentore K, Wagner AA, Genega EM, Rofsky NM, Alsop DC, Pedrosa I. Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology. 2012 Dec;265(3):799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Krajewski KM, Pedrosa I. Imaging advances in the Management of Kidney Cancer. J Clin Oncol. 2018 Oct 29;36:JCO2018791236.

    Article  PubMed  Google Scholar 

  45. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016 Feb;278(2):563–77.

    Article  PubMed  Google Scholar 

  46. Klatte T, Ficarra V, Gratzke C, et al. A literature review of renal surgical anatomy and surgical strategies for partial nephrectomy. Eur Urol. 2015;68:980–92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ficarra V, Porpiglia F, Crestani A, et al. The simplified PADUA renal nephrometry system: a novel classification of parenchymal renal tumors suitable for partial nephrectomy. BJU Int. 2019 Apr;9 https://doi.org/10.1111/bju.14772.

  48. Davidiuk AJ, Parker AS, Thomas CS, et al. Mayo adhesive probability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy. Eur Urol. 2014;66:1165–71.

    Article  PubMed  Google Scholar 

  49. de Leon AD, Kapur P, Pedrosa I. Radiomics in kidney cancer: MR imaging. Magn Reson Imaging Clin N Am. 2019 Feb;27(1):1–13.

    Article  PubMed  Google Scholar 

  50. Kocak B, Yardimci AH, Bektas CT, Turkcanoglu MH, Erdim C, Yucetas U, Koca SB, Kilickesmez O. Textural differences between renal cell carcinoma subtypes: machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol. 2018 Oct;107:149–57.

    Article  PubMed  Google Scholar 

  51. Shu J, Tang Y, Cui J, Yang R, Meng X, Cai Z, Zhang J, Xu W, Wen D, Yin H. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol. 2018 Dec;109:8–12.

    Article  PubMed  Google Scholar 

  52. Yu H, Scalera J, Khalid M, Touret AS, Bloch N, Li B, Qureshi MM, Soto JA, Anderson SW. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY). 2017 Oct;42(10):2470–8.

    Article  PubMed  Google Scholar 

  53. Vendrami CL, Velichko YS, Miller FH, Chatterjee A, Villavicencio CP, Yaghmai V, McCarthy RJ. Differentiation of papillary renal cell carcinoma subtypes on MRI: qualitative and texture analysis. AJR Am J Roentgenol. 2018 Dec;211(6):1234–45.

    Article  PubMed  Google Scholar 

  54. Ding J, Xing Z, Jiang Z, Chen J, Pan L, Qiu J, Xing W. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol. 2018 Jun;103:51–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ficarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ficarra, V. et al. (2022). Imaging in Renal Cancer. In: Anderson, C., Afshar, M. (eds) Renal Cancer . Springer, Cham. https://doi.org/10.1007/978-3-030-84756-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84756-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84755-5

  • Online ISBN: 978-3-030-84756-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics