Skip to main content

Fracture Dislocations About the Knee

  • Chapter
  • First Online:
Advances in Knee Ligament and Knee Preservation Surgery

Abstract

Fracture dislocations about the knee joint are relatively rare injuries involving both bony and ligamentous disruptions resulting in instability. Fracture dislocations can occur about the tibiofemoral, patellofemoral, and tibiofibular joints; and in paediatric patients often through surrounding physes. There is a high risk of associated vascular and neurological injuries underscoring the importance of having a thorough and organized approach to knee fracture dislocations for both the trauma and general orthopaedist. There are well-described classification systems for ligamentous injuries following true knee dislocations; however, there is no standard system to describe the range of femoral, tibial, fibular and patellar injuries that can occur in association. Selection of appropriate management will depend on the fracture pattern, stability of the fracture fragments and the associated joint. Before preparing any management plans, consideration must be given to associated soft tissue compromise with high-energy patterns, patient factors (age, activity level etc.), neurovascular status and available surgical specialty support. Given the broad scope of this topic, we herein focus on: intra-articular distal femur and proximal tibia fractures; acute tibiofibular injuries; patellar fracture dislocations; and paediatric physeal injuries about the knee.

All images/tables are original material, created for this chapter, with the expection of Fig. 19.1 which is adapted from an open source publication, thereby not requiring copyright permission. Source of Fig. 19.1 is: Pelser, PC. (2010). Controversies in the management of tibial plateau fractures. SA Orthopaedic Journal, 9(3), 75–82.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schatzker J, McBroom R. The tibial plateau fracture. The Toronto experience 1968-1975. Clin Orthop. 1979;(138):94–104.

    Google Scholar 

  2. Moore TM. Fracture-dislocation of the knee. Clin Orthop. 1981;(156):128–40. https://doi.org/10.1097/00003086-198105000-00015.

  3. Shao J, et al. Incidence and risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture: a systematic review and meta-analysis. Int J Surg. 2017;41:176–82. https://doi.org/10.1016/j.ijsu.2017.03.085.

    Article  PubMed  Google Scholar 

  4. Porrino J, Richardson ML, Hovis K, Twaddle B, Gee A. Association of tibial plateau fracture morphology with ligament disruption in the context of multiligament knee injury. Curr Probl Diagn Radiol. 2018;47(6):410–6. https://doi.org/10.1067/j.cpradiol.2017.09.001.

    Article  PubMed  Google Scholar 

  5. Colletti P, Greenberg H, Terk MR. MR findings in patients with acute tibial plateau fractures. Comput Med Imaging Graph. 1996;20(5):389–94. https://doi.org/10.1016/S0895-6111(96)00054-7.

    Article  CAS  PubMed  Google Scholar 

  6. Bennett WF, Browner B. Tibial plateau fractures: a study of associated soft tissue injuries. J Orthop Trauma. 1994;8(3):183–8. https://doi.org/10.1097/00005131-199406000-00001.

    Article  CAS  PubMed  Google Scholar 

  7. Stannard JP, Lopez R, Volgas D. Soft tissue injury of the knee after tibial plateau fractures. J Knee Surg. 2010;23(4):187–92. https://doi.org/10.1055/s-0030-1268694.

    Article  PubMed  Google Scholar 

  8. Gardner MJ, et al. The incidence of soft tissue injury in operative tibial plateau fractures. A magnetic resonance imaging analysis of 103 patients. J Orthop Trauma. 2005;19(2):79–84. https://doi.org/10.1097/00005131-200502000-00002.

    Article  PubMed  Google Scholar 

  9. Warner SJ, et al. The effect of soft tissue injuries on clinical outcomes after tibial plateau fracture fixation. J Orthop Trauma. 2018;32(3):141–7. https://doi.org/10.1097/BOT.0000000000001042.

    Article  PubMed  Google Scholar 

  10. Caldas MTL, Malheiros DS, Lazzaroni AP, Avelino EA, Santos AJ. Injury of the knee ligaments associated with ipsilateral femoral shaft fractures. Rev Bras Ortop Engl Ed. 2013;48(5):438–40. https://doi.org/10.1016/j.rboe.2012.11.003.

    Article  Google Scholar 

  11. Walker DM, Kennedy JC. Occult knee ligament injuries associated with femoral shaft fractures. Am J Sports Med. 1980;8(3):172–4. https://doi.org/10.1177/036354658000800305.

    Article  CAS  PubMed  Google Scholar 

  12. Dickson KF, et al. Magnetic resonance imaging of the knee after ipsilateral femur fracture. J Orthop Trauma. 2002;16(8):567–71. https://doi.org/10.1097/00005131-200209000-00005.

    Article  PubMed  Google Scholar 

  13. van Raay JJAM, Raaymakers ELFB, Dupree HW. Knee ligament injuries combined with ipsilateral tibial and femoral diaphyseal fractures: The ‘floating knee. Arch Orthop Trauma Surg. 1991;110(2):75–7. https://doi.org/10.1007/BF00393877.

    Article  PubMed  Google Scholar 

  14. Dillin L, Slabaugh P. Delayed wound healing, infection, and nonunion following open reduction and internal fixation of tibial plafond fractures. J Trauma Inj Infect Crit Care. 1986;26(12):1116–9. https://doi.org/10.1097/00005373-198612000-00011.

    Article  CAS  Google Scholar 

  15. Egol KA, Tejwani NC, Capla EL, Wolinsky PL, Koval KJ. Staged management of high-energy proximal tibia fractures (ota types 41): The results of a prospective, standardized protocol. J Orthop Trauma. 2005;19(7):448–55. https://doi.org/10.1097/01.bot.0000171881.11205.80.

    Article  PubMed  Google Scholar 

  16. Luo CF, Sun H, Zhang B, Zeng BF. Three-column fixation for complex tibial plateau fractures. J Orthop Trauma. 2010;24(11):683–92. https://doi.org/10.1097/BOT.0b013e3181d436f3.

    Article  PubMed  Google Scholar 

  17. Baker BJ, Escobedo EM, Nork SE, Henley MB. Hoffa fracture: a common association with high-energy supracondylar fractures of the distal femur. Am J Roentgenol. 2002;178(4):994. https://doi.org/10.2214/ajr.178.4.1780994.

    Article  Google Scholar 

  18. Nork SE, et al. The association between supracondylar-intercondylar distal femoral fractures and coronal plane fractures. J Bone Jt Surg. 2005;87(3):564–9. https://doi.org/10.2106/JBJS.D.01751.

    Article  Google Scholar 

  19. Jiang R, Luo CF, Wang MC, Yang TY, Zeng BF. A comparative study of Less Invasive Stabilization System (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures. Knee. 2008;15(2):139–43. https://doi.org/10.1016/j.knee.2007.12.001.

    Article  PubMed  Google Scholar 

  20. McKee MD, et al. Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures: results of a multicenter, prospective, randomized clinical trial. J Bone Jt Surg Ser A. 2006;88(12):2613–23. https://doi.org/10.2106/JBJS.E.01416.

    Article  Google Scholar 

  21. Young MJ, Barrack RL. Complications of internal fixation of tibial plateau fractures. Orthop Rev. 1994;23(2):149–54.

    CAS  PubMed  Google Scholar 

  22. Griffin XL, Parsons N, Zbaeda MM, Mcarthur J. Interventions for treating fractures of the distal femur in adults. Cochrane Database Syst Rev. 2015;2015(8) https://doi.org/10.1002/14651858.CD010606.pub2.

  23. Canadian Orthopaedic Trauma Society. Are locking constructs in distal femoral fractures always best? A prospective multicenter randomized controlled trial comparing the less invasive stabilization system with the minimally invasive dynamic condylar screw system. J Orthop Trauma. 2016;30(1):e1–6. https://doi.org/10.1097/BOT.0000000000000450.

    Article  Google Scholar 

  24. Obremskey WT. LCP versus LISS in the treatment of open and closed distal femur fractures: does it make a difference? J Orthop Trauma. 2016;30(6):e212–6. https://doi.org/10.1097/BOT.0000000000000507.

    Article  Google Scholar 

  25. Davis JT, Rudloff MI. Posttraumatic arthritis after intra-articular distal femur and proximal tibia fractures. Orthop Clin North Am. 2019;50(4):445–59. https://doi.org/10.1016/j.ocl.2019.06.002.

    Article  PubMed  Google Scholar 

  26. Moatshe G, Dornan GJ, Ludvigsen T, Løken S, LaPrade RF, Engebretsen L. High prevalence of knee osteoarthritis at a minimum 10-year follow-up after knee dislocation surgery. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3914–22. https://doi.org/10.1007/s00167-017-4443-8.

    Article  PubMed  Google Scholar 

  27. Wasserstein D, Henry P, Paterson JM, Kreder HJ, Jenkinson R. Risk of total knee arthroplasty after operatively treated tibial plateau fracture a matched-population-based cohort study. J Bone Jt Surg Ser A. 2014;96(2):144–50. https://doi.org/10.2106/JBJS.L.01691.

    Article  Google Scholar 

  28. Abdel MP, von Roth P, Cross WW, Berry DJ, Trousdale RT, Lewallen DG. Total knee arthroplasty in patients with a prior tibial plateau fracture: a long-term report at 15 years. J Arthroplasty. 2015;30(12):2170–2. https://doi.org/10.1016/j.arth.2015.06.032.

    Article  PubMed  Google Scholar 

  29. Stevenson I, McMillan TE, Baliga S, Schemitsch EH. Primary and secondary total knee arthroplasty for tibial plateau fractures. J Am Acad Orthop Surg. 2018;26(11):386–95. https://doi.org/10.5435/JAAOS-D-16-00565.

    Article  PubMed  Google Scholar 

  30. Parratte S, Ollivier M, Argenson JN. Primary total knee arthroplasty for acute fracture around the knee. Orthop Traumatol Surg Res. 2018;104(1S):S71–80. https://doi.org/10.1016/j.otsr.2017.05.029.

    Article  CAS  PubMed  Google Scholar 

  31. Harvey GP, Woods GW. Anterolateral dislocation of the proximal tibiofibular joint: case report and literature review. Todays OR Nurse. 1992;14(3):23–7.

    CAS  PubMed  Google Scholar 

  32. Sekiya JK, Kuhn JE. Instability of the proximal tibiofibular joint. J Am Acad Orthop Surg. 2003;11(2):120–8. https://doi.org/10.5435/00124635-200303000-00006.

    Article  PubMed  Google Scholar 

  33. Ogden JA. The anatomy and function of the proximal tibiofibular joint. Clin Orthop Relat Res. 1974;(101):186–91.

    Google Scholar 

  34. Eichenblat M, Nathan H. The proximal tibio fibular joint—an anatomical study with clinical and pathological considerations. Clin Orthop Relat Res. 1983;7(1):31–9. https://doi.org/10.1007/BF00267557.

    Article  CAS  Google Scholar 

  35. Resnick D, Newell JD, Guerra J, Danzig LA, Niwayama G, Goergen TG. Proximal tibiofibular joint: anatomic-pathologic-radiographic correlation. Am J Roentgenol. 1978;131(1):133–8. https://doi.org/10.2214/ajr.131.1.133.

    Article  CAS  Google Scholar 

  36. Nunes J, Direito-Santos B, Costa A, Tavares N, Varanda P, Duarte R. Acute proximal tibiofibular joint dislocation: a sports related injury?—two different cases. Ann Jt. 2019; https://doi.org/10.21037/aoj.2019.01.07.

  37. Thomason PA, Linson MA. Isolated dislocation of the proximal tibiofibular joint. J Trauma Inj Infect Crit Care. 1986;26(2):192–5. https://doi.org/10.1097/00005373-198602000-00018.

    Article  CAS  Google Scholar 

  38. Horan J, Quin G. Proximal tibiofibular dislocation. Emerg Med J. 2006;23(5):e33. https://doi.org/10.1136/emj.2005.032144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogden JA. Subluxation and dislocation of the proximal tibiofibular joint. J Bone Jt Surg Ser A. 1974;56(1):145–54. https://doi.org/10.2106/00004623-197456010-00015.

    Article  CAS  Google Scholar 

  40. Parkes JC, Zelko RR. Isolated acute dislocation of the proximal tibiofibular joint. Case report. J Bone Jt Surg Ser A. 1973;55(1):181–3. https://doi.org/10.2106/00004623-197355010-00020.

    Article  Google Scholar 

  41. Main C, Norris B, Jensen R. Proximal tibiofibular fixation using a dynamic syndesmosis fixation device. Int J Orthop Surg. 2012;13(2) https://doi.org/10.5580/2222.

  42. Robinson Y, Reinke M, Heyde CE, Ertel W, Oberholzer A. Traumatic proximal tibiofibular joint dislocation treated by open reduction and temporary fixation: a case report. Knee Surg Sports Traumatol Arthrosc. 2007;15(2):199–201. https://doi.org/10.1007/s00167-006-0147-1.

    Article  PubMed  Google Scholar 

  43. Warner BT, Moulton SG, Cram TR, LaPrade RF. Anatomic reconstruction of the proximal tibiofibular joint. Arthrosc Tech. 2016;5(1):e207–10.

    Article  Google Scholar 

  44. Hsieh C-H, Chen J-C. Acute dislocation of the proximal tibiofibular joint. J Orthop Sports Phys Ther. 2009;39(11):826. https://doi.org/10.2519/jospt.2009.0414.

    Article  PubMed  Google Scholar 

  45. Laing AJ, Lenehan B, Ali A, Prasad CVR. Isolated dislocation of the proximal tibiofibular joint in a long jumper. Br J Sports Med. 2003;37(4):366–7. https://doi.org/10.1136/bjsm.37.4.366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nieuwe Weme RA, Somford MP, Schepers T. Proximal tibiofibular dislocation: a case report and review of literature. Strateg Trauma Limb Reconstr. 2014;9(3):185–9. https://doi.org/10.1007/s11751-014-0209-8.

    Article  CAS  Google Scholar 

  47. Fithian DC, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32(5):1114–21. https://doi.org/10.1177/0363546503260788.

    Article  PubMed  Google Scholar 

  48. Waterman BR, Belmont PJ, Owens BD. Patellar dislocation in the United States: role of sex, age, race, and athletic participation. J Knee Surg. 2011;25(1):51–7. https://doi.org/10.1055/s-0031-1286199.

    Article  Google Scholar 

  49. Krause EA, Lin CW, Ortega HW, Reid SR. Pediatric lateral patellar dislocation: is there a role for plain radiography in the emergency department? J Emerg Med. 2013;44(6):1126–31. https://doi.org/10.1016/j.jemermed.2012.11.014.

    Article  PubMed  Google Scholar 

  50. Bollier M, Fulkerson JP. The role of trochlear dysplasia in patellofemoral instability. J Am Acad Orthop Surg. 2011;19(1):8–16. https://doi.org/10.5435/00124635-201101000-00002.

    Article  PubMed  Google Scholar 

  51. Koh JL, Stewart C. Patellar instability. Clin Sports Med. 2014;33(3):461–76. https://doi.org/10.1016/j.csm.2014.03.011.

    Article  PubMed  Google Scholar 

  52. Shirley ED, DeMaio M, Bodurtha J. Ehlers-Danlos syndrome in orthopaedics: etiology, diagnosis, and treatment implications. Sports Health. 2012;4(5):394–403. https://doi.org/10.1177/1941738112452385.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vollnberg B, et al. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol. 2012;22(11):2347–56. https://doi.org/10.1007/s00330-012-2493-3.

    Article  PubMed  Google Scholar 

  54. Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthrosc J Arthrosc Relat Surg. 2003;19(7):717–21. https://doi.org/10.1016/S0749-8063(03)00401-8.

    Article  Google Scholar 

  55. Farr J, Covell DJ, Lattermann C. Cartilage lesions in patellofemoral dislocations. Sports Med Arthrosc Rev. 2012;20(3):181–6. https://doi.org/10.1097/jsa.0b013e318259bc40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee BJ, Christino MA, Daniels AH, Hulstyn MJ, Eberson CP. Adolescent patellar osteochondral fracture following patellar dislocation. Knee Surg Sports Traumatol Arthrosc. 2013;21(8):1856–61. https://doi.org/10.1007/s00167-012-2179-z.

    Article  PubMed  Google Scholar 

  57. Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225(3):736–43. https://doi.org/10.1148/radiol.2253011578.

    Article  PubMed  Google Scholar 

  58. Luhmann SJ, Schoenecker PL, Dobbs MB, Gordon JE. Arthroscopic findings at the time of patellar realignment surgery in adolescents. J Pediatr Orthop. 2007;27(5):493–8. https://doi.org/10.1097/BPO.0b013e318093f4d8.

    Article  PubMed  Google Scholar 

  59. Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;(402):21–37. https://doi.org/10.1097/00003086-200209000-00004.

  60. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ. High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1037–43. https://doi.org/10.1007/s00167-017-4505-y.

    Article  PubMed  Google Scholar 

  61. Salonen EE, Magga T, Sillanpää PJ, Kiekara T, Mäenpää H, Mattila VM. Traumatic patellar dislocation and cartilage injury: a follow-up study of long-term cartilage deterioration. Am J Sports Med. 2017;45(6):1376–82. https://doi.org/10.1177/0363546516687549.

    Article  PubMed  Google Scholar 

  62. Kramer J, White LM, Recht MP. MR imaging of the extensor mechanism. Semin Musculoskelet Radiol. 2009;13(4):384–401. https://doi.org/10.1055/s-0029-1242191.

    Article  PubMed  Google Scholar 

  63. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30(4):961–81. https://doi.org/10.1148/rg.304095755.

    Article  PubMed  Google Scholar 

  64. Mouzopoulos G, Borbon C, Siebold R. Patellar chondral defects: a review of a challenging entity. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):1990–2001. https://doi.org/10.1007/s00167-011-1546-5.

    Article  PubMed  Google Scholar 

  65. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26. https://doi.org/10.1007/BF01552649.

    Article  CAS  PubMed  Google Scholar 

  66. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10(3):215–20. https://doi.org/10.1016/S0968-0160(03)00006-1.

    Article  CAS  PubMed  Google Scholar 

  67. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101(1):101–4. https://doi.org/10.1148/101.1.101.

    Article  CAS  PubMed  Google Scholar 

  68. Caton J. Method of measuring the height of the patella. Acta Orthop Belg. 1989;55(3):385–6.

    CAS  PubMed  Google Scholar 

  69. Blackburn JS, Peel TE. A new method of measuring patellar height. J Bone Jt Surg Ser B. 1977;59(2):241–2. https://doi.org/10.1302/0301-620x.59b2.873986.

    Article  Google Scholar 

  70. Tanaka MJ, Cosgarea AJ. Measuring malalignment on imaging in the treatment of patellofemoral instability. Am J Orthop (Belle Mead, N.J.). 2017;46(3):148–51.

    Google Scholar 

  71. Sanders TG, Paruchuri NB, Zlatkin MB. MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. Am J Roentgenol. 2006;187(5):1332–7. https://doi.org/10.2214/AJR.05.1471.

    Article  Google Scholar 

  72. Nomura E, Horiuchi Y, Inoue M. Correlation of MR imaging findings and open exploration of medial patellofemoral ligament injuries in acute patellar dislocations. Knee. 2002;9(2):139–43. https://doi.org/10.1016/S0968-0160(02)00002-9.

    Article  CAS  PubMed  Google Scholar 

  73. Kepler CK, Bogner EA, Hammoud S, Malcolmson G, Potter HG, Green DW. Zone of injury of the medial patellofemoral ligament after acute patellar dislocation in children and adolescents. Am J Sports Med. 2011;39(7):1444–9. https://doi.org/10.1177/0363546510397174.

    Article  PubMed  Google Scholar 

  74. Guerrero P, Li X, Patel K, Brown M, Busconi B. Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. BMC Sports Sci Med Rehabil. 2009;1(1):17. https://doi.org/10.1186/1758-2555-1-17.

    Article  Google Scholar 

  75. Kirsch MD, Fitzgerald SW, Friedman H, Rogers LF. Transient lateral patellar dislocation: diagnosis with MR imaging. Am J Roentgenol. 1993;161(1):109–13. https://doi.org/10.2214/ajr.161.1.8517287.

    Article  CAS  Google Scholar 

  76. Nikku R, Nietosvaara Y, Aalto K, Kallio PE. Operative treatment of primary patellar dislocation does not improve medium-term outcome: a 7-year follow-up report and risk analysis of 127 randomized patients. Acta Orthop. 2005;76(5):699–704. https://doi.org/10.1080/17453670510041790.

    Article  PubMed  Google Scholar 

  77. Sillanpää PJ, M¨ enp̈̈ HM, Mattila VM, Visuri T, Pihlajamäki H. Arthroscopic surgery for primary traumatic patellar dislocation: a prospective, nonrandomized study comparing patients treated with and without acute arthroscopic stabilization with a median 7-year follow-up. Am J Sports Med. 2008;36(12):2301–9. https://doi.org/10.1177/0363546508322894.

    Article  PubMed  Google Scholar 

  78. Camanho GL, Viegas AC, Bitar AC, Demange MK, Hernandez AJ. Conservative versus surgical treatment for repair of the medial patellofemoral ligament in acute dislocations of the patella. Arthrosc J Arthrosc Relat Surg. 2009;25(6):620–5. https://doi.org/10.1016/j.arthro.2008.12.005.

    Article  Google Scholar 

  79. VandenBerg C, Sarkisova N, Pace JL, Rhodes J, Green DW. Current practice trends in the surgical management of patellofemoral instability; a survey of the Pediatric Research in Sports Medicine (PRiSM) Society. Orthop J Sports Med. 2019;7(3_suppl):2325967119S0009. https://doi.org/10.1177/2325967119s00090.

    Article  Google Scholar 

  80. Gkiokas A, Morassi LG, Kohl S, Zampakides C, Megremis P, Evangelopoulos DS. Bioabsorbable pins for treatment of osteochondral fractures of the knee after acute patella dislocation in children and young adolescents. Adv Orthop. 2012;2012:249687. https://doi.org/10.1155/2012/249687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res. 2007;455:93–101. https://doi.org/10.1097/BLO.0b013e31802eb40a.

    Article  PubMed  Google Scholar 

  82. Liu JN, et al. Patellar instability management: a survey of the international patellofemoral study group. Am J Sports Med. 2018;46(13):3299–306. https://doi.org/10.1177/0363546517732045.

    Article  PubMed  Google Scholar 

  83. Duthon VB. Acute traumatic patellar dislocation. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S59–67. https://doi.org/10.1016/j.otsr.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  84. Prince MR, King AH, Stuart MJ, Dahm DL, Krych AJ. Treatment of patellofemoral cartilage lesions in the young, active patient. J Knee Surg. 2015;28(4):285–95. https://doi.org/10.1055/s-0035-1549018.

    Article  PubMed  Google Scholar 

  85. Cash JD, Hughston JC. Treatment of acute patellar dislocation. Am J Sports Med. 1988;16(3):244–9. https://doi.org/10.1177/036354658801600308.

    Article  CAS  PubMed  Google Scholar 

  86. Gesslein M, Merkl C, Bail HJ, Krutsch V, Biber R, Schuster P. Refixation of large osteochondral fractures after patella dislocation shows better mid- to long-term outcome compared with debridement. Cartilage. 2019; https://doi.org/10.1177/1947603519886637.

  87. Chotel F, Knorr G, Simian E, Dubrana F, Versier G. Knee osteochondral fractures in skeletally immature patients: French multicenter study. Orthop Traumatol Surg Res. 2011;97(8 Suppl):S154–9. https://doi.org/10.1016/j.otsr.2011.09.003.

    Article  CAS  PubMed  Google Scholar 

  88. Fuchs M, Vosshenrich R, Dumont C, Stürmer KM. Refixation of osteochondral fragments using absorbable implants. First results of a retrospective study. Chir Z Alle Geb Oper Medizen. 2003;74(6):554–61. https://doi.org/10.1007/s00104-003-0623-9.

    Article  CAS  Google Scholar 

  89. Rüther H, Raschke D, Frosch S, Wachowski M, Seif A. Long-term clinical and MRI results after refixation of osteochondral fractures with resorbable implants. Orthop J Sports Med. 2017;5(4_suppl4):2325967117S0014. https://doi.org/10.1177/2325967117s00147.

    Article  Google Scholar 

  90. Walsh SJ, Boyle MJ, Morganti V. Large osteochondral fractures of the lateral femoral condyle in the adolescent: outcome of bioabsorbable pin fixation. J Bone Jt Surg Ser A. 2008;90(7):1473–8. https://doi.org/10.2106/JBJS.G.00595.

    Article  Google Scholar 

  91. Lidder S, Thomas M, Desai A, Skyrme A, Armitage A, Rajaratnam S. Osteochondral fractures of the knee in skeletally immature patients: short term results of operative fixation using Omnitech screws. Acta Orthop Belg. 2016;82(4):762–7.

    CAS  PubMed  Google Scholar 

  92. Kang H, Li J, Chen XX, Wang T, Liu SC, Li HC. Fixation versus excision of osteochondral fractures after patellar dislocations in adolescent patients: a retrospective cohort study. Chin Med J (Engl). 2018;131(11):1296–301. https://doi.org/10.4103/0366-6999.232800.

    Article  Google Scholar 

  93. Jehan S, Loeffler MD, Pervez H. Osteochondral fracture of the lateral femoral condyle involving the entire weight bearing articular surface fixed with biodegradable screws. J Pak Med Assoc. 2010;60(5):400–1.

    PubMed  Google Scholar 

  94. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;(391 Suppl):S362–9. https://doi.org/10.1097/00003086-200110001-00033.

  95. Kreuz PC, et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthrosc J Arthrosc Relat Surg. 2006;22(11):1180–6. https://doi.org/10.1016/j.arthro.2006.06.020.

    Article  Google Scholar 

  96. Steadman JR, Briggs KK, Matheny LM, Guillet A, Hanson CM, Willimon SC. Outcomes following microfracture of full-thickness articular cartilage lesions of the knee in adolescent patients. J Knee Surg. 2015;28(2):145–50. https://doi.org/10.1055/s-0034-1373737.

    Article  PubMed  Google Scholar 

  97. Mithoefer K, Mcadams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63. https://doi.org/10.1177/0363546508328414.

    Article  PubMed  Google Scholar 

  98. Smoak J, Kluczynski M, Marzo J. Systematic review of patient outcomes and associated predictors after microfracture in the patellofemoral joint. J Am Acad Orthop Surg Glob Res Rev. 2019;3(11):e10.5435.

    PubMed  PubMed Central  Google Scholar 

  99. Christiansen SE, Jakobsen BW, Lund B, Lind M. Isolated repair of the medial patellofemoral ligament in primary dislocation of the patella: a prospective randomized study. Arthrosc J Arthrosc Relat Surg. 2008;24(8):881–7. https://doi.org/10.1016/j.arthro.2008.03.012.

    Article  Google Scholar 

  100. Sillanpää PJ, Mattila VM, Mäenpää H, Kiuru M, Visuri T, Pihlajamäki H. Treatment with and without initial stabilizing surgery for primary traumatic patellar dislocation: a prospective randomized study. J Bone Jt Surg Ser A. 2009;91(2):263–73. https://doi.org/10.2106/JBJS.G.01449.

    Article  Google Scholar 

  101. Philippot R, Chouteau J, Wegrzyn J, Testa R, Fessy MH, Moyen B. Medial patellofemoral ligament anatomy: implications for its surgical reconstruction. Knee Surg Sports Traumatol Arthrosc. 2009;17(5):475–9. https://doi.org/10.1007/s00167-009-0722-3.

    Article  PubMed  Google Scholar 

  102. Stephen JM, Lumpaopong P, Deehan DJ, Kader D, Amis AA. The medial patellofemoral ligament: location of femoral attachment and length change patterns resulting from anatomic and nonanatomic attachments. Am J Sports Med. 2012;40(8):1871–9. https://doi.org/10.1177/0363546512449998.

    Article  PubMed  Google Scholar 

  103. Bitar AC, Demange MK, D’Elia CO, Camanho GL. Traumatic patellar dislocation: nonoperative treatment compared with MPFL reconstruction using patellar tendon. Am J Sports Med. 2012;40(1):114–22. https://doi.org/10.1177/0363546511423742.

    Article  PubMed  Google Scholar 

  104. Zheng X, et al. Surgical medial patellofemoral ligament reconstruction versus non-surgical treatment of acute primary patellar dislocation: a prospective controlled trial. Int Orthop. 2019;43(6):1495–501. https://doi.org/10.1007/s00264-018-4243-x.

    Article  PubMed  Google Scholar 

  105. Regalado G, Lintula H, Kokki H, Kröger H, Väätäinen U, Eskelinen M. Six-year outcome after non-surgical versus surgical treatment of acute primary patellar dislocation in adolescents: a prospective randomized trial. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):6–11. https://doi.org/10.1007/s00167-014-3271-3.

    Article  PubMed  Google Scholar 

  106. Kyung H-S, Kim H-J. Medial patellofemoral ligament reconstruction: a comprehensive review. Knee Surg Relat Res. 2015;27(3):133–40. https://doi.org/10.5792/ksrr.2015.27.3.133.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mubarak SJ, Kim JR, Edmonds EW, Pring ME, Bastrom TP. Classification of proximal tibial fractures in children. J Child Orthop. 2009;3(3):191–7. https://doi.org/10.1007/s11832-009-0167-8.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Vyas S, Ebramzadeh E, Behrend C, Silva M, Zionts LE. Flexion-type fractures of the proximal tibial physis: a report of five cases and review of the literature. J Pediatr Orthop B. 2010;19(6):492–6. https://doi.org/10.1097/BPB.0b013e32833cb764.

    Article  PubMed  Google Scholar 

  109. Burkhart SS, Peterson HA. Fractures of the proximal tibial epiphysis. J Bone Jt Surg Ser A. 1979;61(7):996–1002. https://doi.org/10.2106/00004623-197961070-00005.

    Article  CAS  Google Scholar 

  110. Zionts LE. Fractures around the knee in children. J Am Acad Orthop Surg. 2002;10(5):345–55. https://doi.org/10.5435/00124635-200209000-00006.

    Article  PubMed  Google Scholar 

  111. Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Jt Surg. 1963;45A:587–622. https://doi.org/10.2106/00004623-196345030-00019.

    Article  Google Scholar 

  112. Mayer S, Albright JC, Stoneback JW. Pediatric knee dislocations and physeal fractures about the knee. J Am Acad Orthop Surg. 2015;23(9):571–80. https://doi.org/10.5435/JAAOS-D-14-00242.

    Article  PubMed  Google Scholar 

  113. Gautier E, Ziran BH, Egger B, Slongo T, Jakob RP. Growth disturbances after injuries of the proximal tibial epiphysis. Arch Orthop Trauma Surg. 1998;118(1–2):37–41. https://doi.org/10.1007/s004020050307.

    Article  CAS  PubMed  Google Scholar 

  114. Frey S, Hosalkar H, Cameron DB, Heath A, David Horn B, Ganley TJ. Tibial tuberosity fractures in adolescents. J Child Orthop. 2008;2(6):469–74. https://doi.org/10.1007/s11832-008-0131-z.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mosier SM, Stanitski CL. Acute tibial tubercle avulsion fractures. J Pediatr Orthop. 2004;24(2):181–4. https://doi.org/10.1097/01241398-200403000-00009.

    Article  PubMed  Google Scholar 

  116. Pandya NK, Edmonds EW, Roocroft JH, Mubarak SJ. Tibial tubercle fractures: complications, classification, and the need for intra-articular assessment. J Pediatr Orthop. 2012;32(8):749–59. https://doi.org/10.1097/BPO.0b013e318271bb05.

    Article  PubMed  Google Scholar 

  117. Zrig M, Annabi H, Ammari T, Trabelsi M, Mbarek M, Ben Hassine H. Acute tibial tubercle avulsion fractures in the sporting adolescent. Arch Orthop Trauma Surg. 2008;128(12):1437–42. https://doi.org/10.1007/s00402-008-0628-4.

    Article  PubMed  Google Scholar 

  118. Ogden JA, Tross RB, Murphy MJ. Fractures of the tibial tuberosity in adolescents. J Bone Jt Surg Ser A. 1980;62(2):205–15. https://doi.org/10.2106/00004623-198062020-00006.

    Article  CAS  Google Scholar 

  119. McKoy BE, Stanitski CL. Acute tibial tubercle avulsion fractures. Orthop Clin North Am. 2003;34(3):397–403. https://doi.org/10.1016/S0030-5898(02)00061-5.

    Article  PubMed  Google Scholar 

  120. Pretell-Mazzini J, et al. Outcomes and complications of tibial tubercle fractures in pediatric patients: a systematic review of the literature. J Pediatr Orthop. 2016;36(5):440–6. https://doi.org/10.1097/BPO.0000000000000488.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren de SA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubinger, L., Gazendam, A., Ekhtiari, S., Kay, J., Johal, H., de SA, D. (2022). Fracture Dislocations About the Knee. In: Nakamura, N., Marx, R.G., Musahl, V., Getgood, A., Sherman, S.L., Verdonk, P. (eds) Advances in Knee Ligament and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-84748-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84748-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84747-0

  • Online ISBN: 978-3-030-84748-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics