Skip to main content

Abstract

This chapter introduces mining wastes, primarily from sulfidic ores. These wastes are environmentally destructive and have longevities of thousands of years. The root cause of mining waste is the weathering of exposed waste rock and ores. The weathering process is exacerbated by microbial metabolism. The focus of this chapter and book is the delineation of the role of oxidizing microbes in causing mine waste effluents and the role of reducing microbes in their prevention and control.

Weathering liberates minerals, too low in concentration to be milled economically. The surface area within mine waste is dramatically increased and therefore accessible for oxidation, e.g., weathering. Many elements liberated are needed to sustain life, but increased concentrations are toxic when reaching the receiving environments. The chapter gives a brief, but informative overview of mining practices, and about the complex factors which contribute to the rate and extent of weathering processes. Challenges in predicting the weathering products such as acid mine or rock drainage are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker, W. W., & Banfield, J. F. (1998). Zones of chemical and physical interaction at interfaces between microbial communities and minerals: A model. Geomicrobiology Journal, 15(3), 223–244. https://doi.org/10.1080/01490459809378078

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. In B. S. Lollar (Ed.), Treatise on geochemistry (Vol. 9, pp. 149–204). Elsevier-Permamon.

    Chapter  Google Scholar 

  • Corenblit, D., Baas, A. C., Bornette, G., Darrozes, J., Delmotte, S., Francis, R. A., Gurnell, A. M., FrĂ©dĂ©ric, J., Naiman, R. J., & Steiger, J. (2011). Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth-Science Reviews, 106(3–4), 307–331.

    Article  Google Scholar 

  • Dave, S. R., & Tipre, D. R. (2012). Coal mine drainage pollution and its remediation. In T. Satyanarayana, B. N. Johri, & A. Prakash (Eds.), Microorganisms in environmental management (pp. 719–743). Springer.

    Chapter  Google Scholar 

  • Davis, R. A., Welty, A. T., Borrego, J., Morales, J. A., Pendon, J. G., & Ryan, J. G. (2000). Rio Tinto Estuary (Spain): 5000 years of pollution. Environmental Geology, 39, 1107–1116.

    Article  CAS  Google Scholar 

  • Deamer, D., & Weber, A. L. (2010). Bioenergetics and life’s origins. Cold Springs Harbor Perspectives in Biology, 2(2), a004929.

    Google Scholar 

  • Dold, B. (2014). Evolution of acid mine drainage formation in sulfidic mine tailings. Minerals, 4, 621–641. https://doi.org/10.3390/min4030621

    Article  CAS  Google Scholar 

  • Dold, B. (2017). Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120–132.

    Article  CAS  Google Scholar 

  • Dontsova, K., Balogh-Brunstad, Z., & Chorover, J. (2020). Plants as drivers of rock weathering. In Biogeochemical cycles (pp. 33–58). https://doi.org/10.1002/9781119413332.ch2

    Chapter  Google Scholar 

  • Drever, J. I. (Ed.). (2005). Surface and ground water, weathering, and soils: Treatise on geochemistry (Vol. 5). Elsevier. Available online.

    Google Scholar 

  • Elberling, B. (2004). Disposal of mine tailings in continuous permafrost areas: Environmental aspects and future control strategies. In Cryosols (pp. 677–698). Springer. Available online.

    Chapter  Google Scholar 

  • Gorbushina, A. A. (2007). Life on the rocks. Environmental Microbiology, 9(7), 1613–1631. https://doi.org/10.1111/j.1462-2920.2007.01301.x

    Article  CAS  Google Scholar 

  • Hollesen, J., Elberling, B., & Jansson, P. E. (2011). Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles. Cold Regions Science and Technology, 65(2), 258–268.

    Article  Google Scholar 

  • King, G. M. (2003). Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Applied and Environmental Microbiology, 69(7), 4067–4075.

    Article  CAS  Google Scholar 

  • Kuenzer, C., & Stracher, G. B. (2012). Geomorphology of coal seam fires. Geomorphology, 138(1), 209–222.

    Article  Google Scholar 

  • Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791.

    Article  CAS  Google Scholar 

  • Piatak, N. M., Parsons, M. B., & Seal, R. R. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry, 57, 236–266.

    Article  CAS  Google Scholar 

  • Ritter, S. K. (2014). Making the most of red mud. Chemical Engineering News, 92(8), 33–35. Retrieved from http://cen.acs.org/articles/92/i8/Making-Red-Mud.html

    Article  Google Scholar 

  • Orellana, R., Macaya, C., Bravo, G., Dorochesi, F., Cumsille, A., Valencia, R., Rojas, C., & Seeger, M. (2018). Living at the frontiers of life: Extremophiles in Chile and their potential for bioremediation. In Frontiers in Microbiology (Vol. 9, p. 2309). https://www.frontiersin.org/article/10.3389/fmicb.2018.02309

  • Rosenblum, F., Finch, J. A., Waters, K. E., & Nesset, J. E. (2015). A test apparatus for studying the effects of weathering on self-heating of sulfides. In COM 2015, The Conference of Metallurgists, Canadian Institute of Mining, Metallurgy and Petroleum.

    Google Scholar 

  • Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: The rate-determining step. Science, 167(3921), 1121–1123. https://doi.org/10.1126/science.167.3921.1121

  • Strosnider, W. H. J., LĂłpez, F. L., & Nairn, R. W. (2011). Acid mine drainage at Cerro Rico de PotosĂ­ I: Unabated high-strength discharges reflect a five-century legacy of mining. Environmental Earth Sciences, 64(4), 899–910.

    Article  CAS  Google Scholar 

  • Uroz, S., Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387.

    Article  CAS  Google Scholar 

  • van Schöll, L., Kuyper, T. W., Smits, M. M., Landeweert, R., Hoffland, E., & Van Breemen, N. (2008). Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant and Soil, 303(1–2), 35–47.

    Article  Google Scholar 

  • Wise Uranium Project. (2019). https://www.wise-uranium.org/mdafbr.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarete Kalin-Seidenfaden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalin-Seidenfaden, M. (2022). Introduction and Weathering. In: Kalin-Seidenfaden, M., Wheeler, W.N. (eds) Mine Wastes and Water, Ecological Engineering and Metals Extraction. Springer, Cham. https://doi.org/10.1007/978-3-030-84651-0_1

Download citation

Publish with us

Policies and ethics