Skip to main content

Evolutionary Algorithms for Applications of Biological Networks: A Review

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12836))

Included in the following conference series:

Abstract

With the rapid development of next-generation sequencing and high-throughput technologies, much biological data have been generated. The analysis of biological networks is becoming a hot topic in bioinformatics in recent years. However, many structure analyzing problems in biological networks are computationally hard, and most of heuristic algorithms cannot obtain good solutions. To solve this difficulty, many evolutionary algorithms have been proposed for analyzing the structures in biomedical fields. In this paper, we make a brief review of evolutionary algorithms for three common applications in biological networks such as protein complex detection, biological network alignment and gene regulatory network inference. Moreover, we give some discussions and conclusions of evolutionary algorithms for structure analyses in biological networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patterson, S.D., Aebersold, R.H.: Proteomics: the first decade and beyond. Nat. Genet. 33(3), 311–323 (2003)

    Article  Google Scholar 

  2. Ji, J., Jiao, L., Yang, C., Lv, J., Zhang, A.: MAE-FMD: multi-agent evolutionary method for functional module detection in protein-protein interaction networks. BMC Bioinformatics 15(1), 1–26 (2014)

    Article  Google Scholar 

  3. Zhang, A.: Protein Interaction Networks: Computational Analysis. Cambridge University Press (2009)

    Google Scholar 

  4. Guzzi, P.H., Milenković, T.: Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Briefings Bioinform. 19(3), 472–481 (2018)

    Google Scholar 

  5. Li, P.C.H., Sedighi, A., Wang, L. (eds.): Microarray technology. MMB, vol. 1368. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3136-1

    Book  Google Scholar 

  6. Vikhar, P.A.: Evolutionary algorithms: a critical review and its future prospects. In: 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), pp. 261–265. IEEE (2016)

    Google Scholar 

  7. Bandyopadhyay, S., Ray, S., Mukhopadhyay, A., Maulik, U.: A multiobjective approach for identifying protein complexes and studying their association in multiple disorders. Algorithms Mol. Biol. 10(1), 1–15 (2015)

    Article  Google Scholar 

  8. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)

    Article  Google Scholar 

  9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  10. Pizzuti, C., Rombo, S.: Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 193–200 (2012)

    Google Scholar 

  11. Pizzuti, C., Rombo, S.E.: An evolutionary restricted neighborhood search clustering approach for PPI networks. Neurocomputing 145, 53–61 (2014)

    Article  Google Scholar 

  12. King, A.D., Pr\(\breve{\text{z}}\)ulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Google Scholar 

  13. Lakizadeh, A., Jalili, S.: BiCAMWI: a genetic-based biclustering algorithm for detecting dynamic protein complexes. PLoS One 11(7), e0159923 (2016)

    Google Scholar 

  14. Ramadan, E., Naef, A., Ahmed, M.: Protein complexes predictions within protein interaction networks using genetic algorithms. BMC Bioinformatics 17(7), 481–489 (2016)

    Google Scholar 

  15. Mukhopadhyay, A., Ray, S., De, M.: Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach. Mol. BioSyst. 8(11), 3036–3048 (2012)

    Article  Google Scholar 

  16. He, T., Chan, K.C.: Evolutionary graph clustering for protein complex identification. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 892–904 (2016)

    Article  Google Scholar 

  17. Ben M’barek, M., Borgi, A., Ben Hmida, S., Rukoz, M.: GA-PPI-Net: A genetic algorithm for community detection in protein-protein interaction networks. In: van Sinderen, M., Maciaszek, L.A. (eds.) ICSOFT 2019. CCIS, vol. 1250, pp. 133–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52991-8_7

    Chapter  Google Scholar 

  18. Abduljabbar, D.A., Hashim, S.Z.M., Sallehuddin, R.: An enhanced evolutionary algorithm for detecting complexes in protein interaction networks with heuristic biological operator. In: International Conference on Soft Computing and Data Mining, pp. 334–345. Springer (2020)

    Google Scholar 

  19. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  20. Ray, S., De, M., Mukhopadhyay, A.: A multiobjective go based approach to protein complex detection. Procedia Technol. 4, 555–560 (2012)

    Article  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  22. Ray, S., Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: Incorporating fuzzy semantic similarity measure in detecting human protein complexes in PPI network: a multiobjective approach. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2013)

    Google Scholar 

  23. Bara’a, A.A., Abdullah, Q.Z.: Improving the performance of evolutionary-based complex detection models in protein–protein interaction networks. Soft Comput. 22(11), 3721–3744 (2018)

    Google Scholar 

  24. Abdulateef, A.H., Bara’a, A.A., Rashid, A.N., Al-Ani, M.: A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks. Appl. Soft Comput. 73, 1004–1025 (2018)

    Google Scholar 

  25. Maulik, U., et al.: Mining quasi-bicliques from hiv-1-human protein interaction network: a multiobjective biclustering approach. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(2), 423–435 (2012)

    Article  Google Scholar 

  26. Cao, B., Luo, J., Liang, C., Wang, S., Song, D.: Moepga: a novel method to detect protein complexes in yeast protein–protein interaction networks based on multiobjective evolutionary programming genetic algorithm. Comput. Biol. Chem. 58, 173–181 (2015)

    Article  Google Scholar 

  27. Ray, S., Hossain, A., Maulik, U.: Disease associated protein complex detection: a multi-objective evolutionary approach. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1–6. IEEE (2016)

    Google Scholar 

  28. Chowdhury, A., Rakshit, P., Konar, A., Atulya, K.N.: Prediction of protein complexes using an evolutionary approach. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1056–1063. IEEE (2018)

    Google Scholar 

  29. Lei, X., Huang, X., Shi, L., Zhang, A.: Clustering ppi data based on improved functional-flow model through quantum-behaved PSO. Int. J. Data Min. Bioinform. 6(1), 42–60 (2012)

    Article  Google Scholar 

  30. Sharafuddin, I., Mirzaei, M., Rahgozar, M., Masoudi-Nejad, A.: Protein-protein interaction network clustering using particle swarm optimization. In: IWBBIO, Citeseer, pp. 317–324 (2013)

    Google Scholar 

  31. Ji, J., Liu, Z., Zhang, A., Jiao, L., Liu, C.: Improved ant colony optimization for detecting functional modules in protein-protein interaction networks. In: Liu, C., Wang, L., Yang, A. (eds.) ICICA 2012. CCIS, vol. 308, pp. 404–413. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34041-3_57

    Chapter  Google Scholar 

  32. Ji, J., Liu, Z., Zhang, A., Jiao, L., Liu, C.: Ant colony optimization with multi-agent evolution for detecting functional modules in protein-protein interaction networks. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp. 445–453. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34062-8_58

    Chapter  Google Scholar 

  33. Ji, J., Liu, Z., Zhang, A., Yang, C., Liu, C.: Ham-fmd: mining functional modules in protein–protein interaction networks using ant colony optimization and multiagent evolution. Neurocomputing 121, 453–469 (2013)

    Article  Google Scholar 

  34. Wang, Y., Mohan, C.K.: Gene regulatory network inference with evolution strategies and sparse matrix representation. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2105–2112. IEEE (2019)

    Google Scholar 

  35. Barman, S., Kwon, Y.K.: A Boolean network inference from time-series gene expression data using a genetic algorithm. Bioinformatics 34(17), i927–i933 (2018)

    Article  Google Scholar 

  36. Zheng, M., Zhang, S., Zhou, Y., Liu, G.: Inferring gene regulatory networks based on a hybrid parallel genetic algorithm and the threshold restriction method. Interdisc. Sci.: Comput. Life Sci. 10(1), 221–232 (2018)

    Article  Google Scholar 

  37. Iranmanesh, S., Sattari-Naeini, V., Ghavami, B.: Inferring gene regulatory network using path consistency algorithm based on conditional mutual information and genetic algorithm. In: 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 98–103. IEEE (2017)

    Google Scholar 

  38. Chen, Y., Mazlack, L.J., Minai, A.A., Lu, L.J.: Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Appl. Soft Comput. 37, 667–679 (2015)

    Article  Google Scholar 

  39. Shen, F., Liu, J., Wu, K.: A preference-based evolutionary biobjective approach for learning large-scale fuzzy cognitive maps: an application to gene regulatory network reconstruction. IEEE Trans. Fuzzy Syst. 28(6), 1035–1049 (2020)

    Article  Google Scholar 

  40. García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput. Biol. Chem. 80, 409–418 (2019)

    Google Scholar 

  41. Ren, H.P., Huang, X.N., Hao, J.X.: Finding robust adaptation gene regulatory networks using multi-objective genetic algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(3), 571–577 (2015)

    Article  Google Scholar 

  42. Liu, L., Liu, J.: Inferring gene regulatory networks with hybrid of multi-agent genetic algorithm and random forests based on fuzzy cognitive maps. Appl. Soft Comput. 69, 585–598 (2018)

    Article  Google Scholar 

  43. Liu, J., Chi, Y., Zhu, C., Jin, Y.: A time series driven decomposed evolutionary optimization approach for reconstructing large-scale gene regulatory networks based on fuzzy cognitive maps. BMC Bioinformatics 18(1), 1–14 (2017)

    Article  Google Scholar 

  44. Liu, J., Chi, Y., Zhu, C.: A dynamic multiagent genetic algorithm for gene regulatory network reconstruction based on fuzzy cognitive maps. IEEE Trans. Fuzzy Syst. 24(2), 419–431 (2015)

    Article  Google Scholar 

  45. Liu, L., Liu, J.: Reconstructing gene regulatory networks via memetic algorithm and lasso based on recurrent neural networks. Soft. Comput. 24(6), 4205–4221 (2020)

    Article  Google Scholar 

  46. Fefelov, A., Lytvynenko, V., Voronenko, M., Babichev, S., Osypenko, V.: Reconstruction of the gene regulatory network by hybrid algorithm of clonal selection and trigonometric differential evolution. In: 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), pp. 305–309. IEEE (2018)

    Google Scholar 

  47. Hurtado, S., García-Nieto, J., Navas-Delgado, I., Nebro, A.J., Aldana-Montes, J.F.: Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl. Intell. 51, 1–20 (2020)

    Google Scholar 

  48. Vijayan, V., Milenković, T.: Multiple network alignment via multimagna++. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(5), 1669–1682 (2017)

    Google Scholar 

  49. Jana, B., Mitra, S., Acharyya, S.: Repository and mutation based particle swarm optimization (RMPSO): a new PSO variant applied to reconstruction of gene regulatory network. Appl. Soft Comput. 74, 330–355 (2019)

    Article  Google Scholar 

  50. Vijayan, V., Critchlow, D., Milenković, T.: Alignment of dynamic networks. Bioinformatics 33(14), i180–i189 (2017)

    Google Scholar 

  51. Sultana, R., Showkat, D., Samiullah, M., Chowdhury, A.: Reconstructing gene regulatory network with enhanced particle swarm optimization. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8835, pp. 229–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12640-1_28

    Chapter  Google Scholar 

  52. Vijayan, V., Saraph, V., Milenković, T.: Magna++: mMaximizing accuracy in global network alignment via both node and edge conservation. Bioinformatics 31(14), 2409–2411 (2015)

    Google Scholar 

  53. Lee, W., Hsiao, Y., Hwang, W.: Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment. BMC Syst. Biol. 8(1), 1–19 (2014)

    Article  Google Scholar 

  54. Saraph, V., Milenkovi\(\acute{\text{c}}\), T.: Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20), 2931–2940 (2014)

    Google Scholar 

  55. Palafox, L., Noman, N., Iba, H.: Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans. Evol. Comput. 17(4), 577–587 (2012)

    Article  Google Scholar 

  56. Ibragimov, R., Malek, M., Baumbach, J., Guo, J.: Multiple graph edit distance: simultaneous topological alignment of multiple protein-protein interaction networks with an evolutionary algorithm. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 277–284 (2014)

    Google Scholar 

  57. Lee, C., Leu, Y., Yang, W.: Constructing gene regulatory networks from microarray data using GA/PSO with DTW. Appl. Soft Comput. 12(3), 1115–1124 (2012)

    Article  Google Scholar 

  58. Ibragimov, R., Malek, M., Guo, J., Baumbach, J.: Gedevo: aAn evolutionary graph edit distance algorithm for biological network alignment. In: German Conference on Bioinformatics 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  59. Lee, W., Hsiao, Y.: Inferring gene regulatory networks using a hybrid ga–pso approach with numerical constraints and network decomposition. Inf. Sci. 188, 80–99 (2012)

    Article  Google Scholar 

  60. Wang, S., Ma, L., Zhang, X.: Adaptive artificial immune system for biological network alignment. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2020. LNCS, vol. 12464, pp. 560–570. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_49

    Chapter  Google Scholar 

  61. Mahfuz, O.B., Showkat, D.: Inference of gene regulatory network with s-system and artificial bee colony algorithm. In: 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 117–122. IEEE (2018)

    Google Scholar 

  62. Clark, C., Kalita, J.: A multiobjective memetic algorithm for ppi network alignment. Bioinformatics 31(12), 1988–1998 (2015)

    Article  Google Scholar 

  63. Forghany, Z., Davarynejad, M., Snaar-Jagalska, B.E.: Gene regulatory network model identification using artificial bee colony and swarm intelligence. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–6. IEEE (2012)

    Google Scholar 

  64. Gong, M., Peng, Z., Ma, L., Huang, J.: Global biological network alignment by using efficient memetic algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(6), 1117–1129 (2015)

    Article  Google Scholar 

  65. Kentzoglanakis, K., Poole, M.: A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(2), 358–371 (2011)

    Article  Google Scholar 

  66. Huang, J., Gong, M., Ma, L.: A global network alignment method using discrete particle swarm optimization. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 705–718 (2016)

    Article  Google Scholar 

  67. Chen, Y., Mazlack, L.J., Lu, L.J.: Inferring fuzzy cognitive map models for gene regulatory networks from gene expression data. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine, pp. 1–4. IEEE (2012)

    Google Scholar 

  68. Ibragimov, R., Martens, J., Guo, J., Baumbach, J.: NABEECO: biological network alignment with bee colony optimization algorithm. In: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pp. 43–44 (2013)

    Google Scholar 

  69. Mandal, S., Saha, G., Pal, R.K.: Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm. J. Bioinform. Comput. Biol. 15(04), 1750016 (2017)

    Article  Google Scholar 

  70. Bunke, H., Riesen, K.: Graph edit distance–optimal and suboptimal algorithms with applications. Analysis of Complex Networks (2009)

    Google Scholar 

  71. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)

    Article  Google Scholar 

  72. Savageau, M.A.: Biochemical systems analysis. A Study of Function and Design in Molecular Biology, Addison Wesley Publ. (1976)

    Google Scholar 

  73. Liu, J., Chi, Y., Liu, Z., He, S.: Ensemble multi-objective evolutionary algorithm for gene regulatory network reconstruction based on fuzzy cognitive maps. CAAI Trans. Intell. Technol. 4(1), 24–36 (2019)

    Article  Google Scholar 

  74. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijia Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Liu, Q., Ma, L., Shao, Z. (2021). Evolutionary Algorithms for Applications of Biological Networks: A Review. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics