Skip to main content

Current Advances in Keratoconus Imaging

  • Chapter
  • First Online:
Keratoconus
  • 683 Accesses

Abstract

Keratoconus imaging has evolved dramatically over the past decade. Scheimpflug imaging is still the dominant technology, allowing the clinician to evaluate the anterior, posterior posterior curvatures and comparing thicknesses at every point of the cornea. Emerging technologies are optical coherence tomography (OCT) and the biomechanical assessment of the cornea by high frequency Scheimpflug cornea sampling and Brillouin microscopy. New algorithms and artificial intelligence significantly improve detection sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Helmholtz H. Graefe’s Archiv für Ophthalmologie. 1854;2:3.

    Google Scholar 

  2. Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci. 1995;36(7):1327–35.

    CAS  PubMed  Google Scholar 

  3. Maeda N, et al. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35(6):2749–57.

    CAS  PubMed  Google Scholar 

  4. Rabinowitz YS, Mcdonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Cor Surg. 1988;5(6):400–8.

    Article  Google Scholar 

  5. Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J Refract Surg. 1995;11(5):371.

    Article  CAS  Google Scholar 

  6. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg. 1999;25(10):1327–35.

    Article  CAS  Google Scholar 

  7. Mahmoud AM, et al. CLMI the cone location and magnitude index. Cornea. 2008;27(4):480.

    Article  Google Scholar 

  8. Barsky BA, Klein SA, Garcia DD. Gaussian power with cylinder vector field representation for corneal topography maps. Optom Vis Sci. 1997;74(11):917–25.

    Article  CAS  Google Scholar 

  9. Mencucci R, Paladini I, Virgili G, Giacomelli G, Menchini U. Corneal thickness measurements using time-domain anterior segment OCT, ultrasound, and Scheimpflug tomographer pachymetry before and after corneal cross-linking for keratoconus. J Refract Surg. 2012;28(8):562–6.

    Article  Google Scholar 

  10. Antonios R, Abdul Fattah M, Maalouf F, Abiad B, Awwad ST. Central corneal thickness after cross-linking using high-definition optical coherence tomography, ultrasound, and dual scheimpflug tomography: a comparative study over one year. Am J Ophthalmol. 2016;2016(167):38–47.

    Article  Google Scholar 

  11. Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed a review. Clin Experiment Ophthalmol. 2009;1(37):14–29.

    Article  Google Scholar 

  12. Arce C. Qualitative and quantitative analysis of aspheric symmetry and asymmetry on corneal surfaces. In: ASCRS symposium and congress. Boston, MA;2010.

    Google Scholar 

  13. Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156(2):237–46.

    Article  Google Scholar 

  14. Awwad ST, Yehyia M, Asroui L, Mehanna CJ. Comparative evaluation of corneal tomography symmetry based on centration: vertex versus geometric center of the cornea. In: ASCRS symposium and congress. Boston, MA;2020. www.ascrs.org.

  15. Mahmoud AM, Nuñez MX, Blanco C, et al. Expanding the cone location and magnitude index to include corneal thickness and posterior surface information for the detection of keratoconus. Am J Ophthalmol. 2013;156(6):1102–11.

    Article  Google Scholar 

  16. Ambrosio R Jr, Alonso RS, Luz A, Coca Velarde LG. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg. 2006;32:1851–9.

    Article  Google Scholar 

  17. Luz A, Ursulio M, Castaneda D, Ambrosio R Jr. Corneal thickness progression from the thinnest point to the limbus: study based on a normal and a keratoconus population to create reference values. Arq Bras Oftalmol. 2006;69:579–83.

    Article  Google Scholar 

  18. Ambrosio R Jr, Caiado AL, Guerra FP, et al. Novel pa- chymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011;27:753–8.

    Article  Google Scholar 

  19. Mehanna CJ, Asroui L, Khalil J, El Zein L, Awwad ST. Sectorial thickness progression index: a fixation-independent parameter for the detection of keratoconus. In: ESCRS symposium and congress. Amsterdam, The Netherlands;2020. www.escrs.org.

  20. Arbelaez MC, Versaci F, Vestri G, Barboni P, Savini G. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology. 2012;119(11):2231–8.

    Article  Google Scholar 

  21. Villavicencio OF, Gilani F, Henriquez MA, Izquierdo L, Ambrósio RR. Independent population validation of the Belin/Ambrósio enhanced ectasia display: implications for keratoconus studies and screening. Int J Keratoconus Ectatic Corneal Dis. 2014;3(1):1–8. https://doi.org/10.5005/jp-journals-10025-1069.

    Article  Google Scholar 

  22. Sedaghat MR, Momeni-Moghaddam H, Ambrósio R, et al. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea. 2018;37(8):1025–34. https://doi.org/10.1097/ICO.0000000000001639.

    Article  PubMed  Google Scholar 

  23. Chan TCY, Wang YM, Yu M, Jhanji V. Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus. Br J Ophthalmol. 2018;102(1):42–7. https://doi.org/10.1136/bjophthalmol-2017-310355.

    Article  PubMed  Google Scholar 

  24. Wang YM, Chan TCY, Yu M, Jhanji V. Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes. J Refract Surg. 2017;33(9):632–8. https://doi.org/10.3928/1081597X-20170621-09.

    Article  PubMed  Google Scholar 

  25. Chan TCY, Meng Wang Y, Yu M, Jhanji V. Comparison of corneal tomography and a new combined tomographic biomechanical index in subclinical keratoconus. J Refract Surg. 2018;34(9):616–21. https://doi.org/10.3928/1081597X-20180705-02.

    Article  PubMed  Google Scholar 

  26. Ruiseñor Vázquez PR, Galletti JD, Minguez N, et al. Pentacam scheimpflug tomography findings in topographically normal patients and subclinical keratoconus cases. Am J Ophthalmol. 2014;158(1). https://doi.org/10.1016/j.ajo.2014.03.018.

  27. Hashemi H, Beiranvand A, Yekta A, Maleki A, Yazdani N, Khabazkhoob M. Pentacam top indices for diagnosing subclinical and definite keratoconus. J Curr Ophthalmol. 2016;28(1):21–6. https://doi.org/10.1016/j.joco.2016.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abou Shousha M, Perez VL, Canto APFS, Vaddavalli PK, Sayyad FE, Cabot F, Feuer WJ, Wang J, Yoo SH. The use of Bowman’s layer vertical topographic thickness map in the diagnosis of keratoconus. Ophthalmology. 2014;121(5):988–93.

    Article  Google Scholar 

  29. Mazzotta C, Bagaglia SA, Vinciguerra R, Ferrise M, Vinciguerra P. Enhanced-fluence pulsed-light iontophoresis corneal cross-linking: 1-year morphological and clinical results. J Refract Surg. 2018;34(7):438–44.

    Article  Google Scholar 

  30. Awwad ST, Chacra LM, Helwe C, Dhaini AR, Telvizian T, Torbey J, Abdul Fattah M, Torres-Netto EA, Hafezi F, Shetty R. Mitomycin C application after corneal cross-linking for keratoconus increases stromal haze. J Refract Surg. 2021;37(2):83–90.

    Article  Google Scholar 

  31. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. Journal Refract Surg. 2009;25(7):604–10.

    Article  Google Scholar 

  32. Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J Cataract Refract Surg. 2016;42:284–95.

    Article  Google Scholar 

  33. Xu Z, Jiang J, Yang C, Huang S, Peng M, Li W, Cui L, Wang J, Lu F, Shen M. Value of corneal epithelial and Bowman's layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis, vol. 6. In: Scientific Reports (Nature Publisher Group). London;2016. p. 31550.

    Google Scholar 

  34. Rocha KM, Perez-Straziota E, Stulting RD, Randleman JB. SD-OCT analysis of regional epithelial thickness profiles in keratoconus, postoperative corneal ectasia, and normal eyes. J Refract Surg. 2013;29(3):173–9.

    Google Scholar 

  35. El Wardani M, Hashemi K, Aliferis K, Kymionis G. Topographic changes simulating keratoconus in patients with irregular inferior epithelial thickening documented by anterior segment optical coherence tomography. Clin Ophthalmol. 2019;13:2103–10.

    Article  Google Scholar 

  36. Gore DM, Leucci MT, Anand V, Cueto LF, Arba Mosquera S, Allan BD. Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus. J Cataract Refract Surg. 2018;44(5):571–80.

    Article  Google Scholar 

  37. Iglesias I, Ragazzoni R, Julien Y, Artal P. Extended source pyramid wave-front sensor for the human eye. Opt Express. 2002;10(9):419–28.

    Article  Google Scholar 

  38. Plaza-Puche AB, Salerno LC, Versaci F, Romero D, Alio JL. Clinical evaluation of the repeatability of ocular aberrometry obtained with a new pyramid wavefront sensor. Eur J Ophthalmol. 2019;29(6):585–92.

    Google Scholar 

  39. Roberts CJ, Dupps WJ. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991–8. https://doi.org/10.1016/j.jcrs.2014.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy. Investig Ophthalmol Vis Sci. 2014;55(7):4490–5. https://doi.org/10.1167/iovs.14-14450.

    Article  Google Scholar 

  41. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–62. https://doi.org/10.1016/j.jcrs.2004.10.044.

    Article  PubMed  Google Scholar 

  42. Kaushik S, Pandav SS. Ocular response analyzer. J Curr Glaucoma Pract. 2012;2016(6):17–9.

    Article  Google Scholar 

  43. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Investig Ophthalmol Vis Sci. 2007;48(7):3026–31. https://doi.org/10.1167/iovs.04-0694.

    Article  Google Scholar 

  44. Touboul D, Bénard A, Mahmoud AM, Gallois A, Colin J, Roberts CJ. Early biomechanical keratoconus pattern measured with an ocular response analyzer: Curve analysis. J Cataract Refract Surg. 2011;37(12):2144–50. https://doi.org/10.1016/j.jcrs.2011.06.029.

    Article  PubMed  Google Scholar 

  45. Fontes BM, Ambrósio R, Jardim D, Velarde GC, Nosé W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117(4):673–9. https://doi.org/10.1016/j.ophtha.2009.09.023.

    Article  PubMed  Google Scholar 

  46. Kirwan C, O’Malley D, O’Keefe M. Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert ocular response analyzer. Ophthalmologica. 2008;222(5):334–7. https://doi.org/10.1159/000145333.

    Article  PubMed  Google Scholar 

  47. Hallahan KM, Sinha Roy A, Ambrosio R, Salomao M, Dupps WJ. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121(2):459–68. https://doi.org/10.1016/j.ophtha.2013.09.013.

    Article  PubMed  Google Scholar 

  48. Mikielewicz M, Kotliar K, Barraquer RI, Michael R. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol. 2011;95(6):793–8. https://doi.org/10.1136/bjo.2010.188300.

    Article  PubMed  Google Scholar 

  49. Luz A, Lopes B, Hallahan KM, et al. Discriminant value of custom ocular response analyzer waveform derivatives in forme fruste keratoconus. Am J Ophthalmol. 2016;164:14–21. https://doi.org/10.1016/j.ajo.2015.12.020.

    Article  PubMed  Google Scholar 

  50. Luz A, Lopes B, Hallahan KM, et al. Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg. 2016;32(7):479–85. https://doi.org/10.3928/1081597X-20160502-02.

    Article  PubMed  PubMed Central  Google Scholar 

  51. OCULUS Optikgeräte GmbH. Corneal Biomechanics. https://www.corneal-biomechanics.com/en/biomechanics/.

  52. Roberts CJ, Mahmoud AM, Bons JP, et al. Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic Scheimpflug analyzer. J Refract Surg. 2017;33(4):266–73. https://doi.org/10.3928/1081597X-20161221-03.

    Article  PubMed  Google Scholar 

  53. Koc M, Aydemir E, Tekin K, Inanc M, Kosekahya P, Kiziltoprak H. Biomechanical analysis of subclinical keratoconus with normal topographic, topometric, and tomographic findings. J Refract Surg. 2019;35(4):247–52. https://doi.org/10.3928/1081597X-20190226-01.

    Article  PubMed  Google Scholar 

  54. Vinciguerra R, Ambrósio R, Elsheikh A, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10. https://doi.org/10.3928/1081597X-20160629-01.

    Article  PubMed  Google Scholar 

  55. Ferreira-Mendes J, Lopes BT, Faria-Correia F, Salomão MQ, Rodrigues-Barros S, Ambrósio R. Enhanced ectasia detection using corneal tomography and biomechanics. Am J Ophthalmol. 2019;197:7–16. https://doi.org/10.1016/j.ajo.2018.08.054.

    Article  PubMed  Google Scholar 

  56. Ambrósio R, Lopes BT, Faria-Correia F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43. https://doi.org/10.3928/1081597X-20170426-02.

    Article  PubMed  Google Scholar 

  57. Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrósio R. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg. 2019;45(3):328–36. https://doi.org/10.1016/j.jcrs.2018.10.030.

    Article  PubMed  Google Scholar 

  58. OCULUS Optikgeräte GmbH. Biomechanical assessment post LASIK: The new CBI-LVC [Video]. YouTube. https://www.youtube.com/watch?v=SDoStHfqzUY. Accessed 25 Sep 2019.

  59. Eliasy A, Chen K-J, Vinciguerra R, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;7(May):1–10. https://doi.org/10.3389/fbioe.2019.00105.

    Article  Google Scholar 

  60. Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–85. https://doi.org/10.1098/rsif.2010.0108.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lopes B, Wang J, Eliasy A, Abass A. Early term results of the stress-strain index in patients with keratoconus submitted to corneal cross-linking;2019.

    Google Scholar 

  62. Maklad O, Eliasy A, Chen KJ, et al. Fluid-structure interaction based algorithms for IOP and corneal material behavior. Front Bioeng Biotechnol. 2020;8(August):1–11. https://doi.org/10.3389/fbioe.2020.00970.

    Article  Google Scholar 

  63. Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics. Investig Ophthalmol Vis Sci. 2012;53(1):185–90. https://doi.org/10.1167/iovs.11-8281.

    Article  Google Scholar 

  64. Seiler TG, Shao P, Eltony A, Seiler T, Yun SH. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;202:118–25. https://doi.org/10.1016/j.ajo.2019.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shao P, Eltony AM, Seiler TG, et al. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci Rep. 2019;9(1):1–12. https://doi.org/10.1038/s41598-019-43811-5.

    Article  CAS  Google Scholar 

  66. Shao P, Seiler TG, Eltony AM, et al. Effects of corneal hydration on brillouin microscopy in vivo. Investig Ophthalmol Vis Sci. 2018;59(7):3020–7. https://doi.org/10.1167/iovs.18-24228.

    Article  CAS  Google Scholar 

  67. Webb JN, Zhang H, Roy AS, Randleman JB, Scarcelli G. Detecting mechanical anisotropy of the cornea using brillouin microscopy. Transl Vis Sci Technol. 2020;9(7):1–11. https://doi.org/10.1167/tvst.9.7.26.

    Article  Google Scholar 

  68. Guber I, McAlinden C, Majo F, Bergin C. Identifying more reliable parameters for the detection of change during the follow-up of mild to moderate keratoconus patients. Eye Vis (London, England). 2017;4(1):24.

    Article  Google Scholar 

  69. Prakash G, Philip R, Srivastava D, Bacero R. Evaluation of the robustness of current quantitative criteria for keratoconus progression and corneal cross-linking. J Refract Surg. 2016;32(7):465–72.

    Article  Google Scholar 

  70. Guilbert E, Saad A, Elluard M, Grise-Dulac A, Rouger H, Gatinel D. Repeatability of keratometry measurements obtained with three topographers in keratoconic and normal corneas. J Refract Surg. 2016;32(3):187–92.

    Article  Google Scholar 

  71. Flynn TH, Sharma DP, Bunce C, Wilkins MR. Differential precision of corneal Pentacam HR measurements in early and advanced keratoconus. Br J Ophthalmol. 2015. bjophthalmol-2015–307201.

    Google Scholar 

  72. Hashemi H, Yekta A, Khabazkhoob M. Effect of keratoconus grades on repeatability of keratometry readings: comparison of 5 devices. J Cataract Refract Surg. 2015;41(5):1065–72.

    Article  Google Scholar 

  73. Asroui L, Mehanna CJ, Salloum A, Chalhoub RM, Roberts CJ, Awwad ST. Repeatability of zone averages compared to single point measurements of maximal curvature in keratoconus. Am J Ophthalmol. 2021;221(1):226–34.

    Article  Google Scholar 

  74. Belin MW, Duncan JK. Keratoconus: the ABCD grading system. Klin Monbl Augenheilkd. 2016;233(6):701–7.

    Article  CAS  Google Scholar 

  75. Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vis (London, England). 2016;3(1):6.

    Article  Google Scholar 

  76. Belin MW, Alizadeh R, Torres-Netto E, Hafezi F, Ambrósio R, Pajic BP. Determining progression in ectatic corneal disease. Asia-Pacific J Ophthalmol . 2020;9(6):541–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awwad, S.T., Asroui, L. (2022). Current Advances in Keratoconus Imaging. In: Armia, A., Mazzotta, C. (eds) Keratoconus. Springer, Cham. https://doi.org/10.1007/978-3-030-84506-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84506-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84505-6

  • Online ISBN: 978-3-030-84506-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics