Skip to main content

Agronomic Olive Bio-waste Management: Combination of Olive Mill Wastewater Spreading and Compost Amendment – Effects on Soil Properties and Olive Tree Performance

  • Chapter
  • First Online:
Mediterranean Fruits Bio-wastes

Abstract

In Mediterranean countries, olive oil production generates huge amounts of by-products, namely olive mill wastewater (OMW)—a heavy polluting effluent of severe environmental concerns- affecting the environment and raising management problems to the olive oil industry. The OMW spreading was suggested to overcome soil nutriments’ lack and to mobilize its ions. However, these agronomic purposes could negatively affect the effluent acidity and its relatively high minerals and phenolic compounds contents. Consequently, its co-composting with bio-wastes was investigated for reducing its negative impacts, recycling, and transforming this effluent into a fertilizer. The present work deals with the OMW valorisation, considering sustainable management perspectives’ for agronomic use. The effluent recycling through its spreading in the agricultural field and/or its co-composting and then the compost application for soil amendment as fertilizer were presented. The OMW short, medium, and long-term effects on the soil and the olive trees were investigated. The objectives of this chapter were to evidence chemical and microbiological properties of the field where this effluent and/or its co-compost were amended. Such uses were evaluated, and the impacts of the effluent agronomic opportunities presented by assessing the efficient dose to be used were discussed. Consequently, its fertilizing potential was investigated considering the global effluent effect on soil layers, and the olive tree as a result of the amendment; the physiological and biochemical characteristics analyzed during six successive years, and the olive yield established after 6 years (the long-term effect) of the Chemlali variety OMW treatment. In this chapter, the olive sector and its importance in Mediterranean countries were first introduced, followed by the presentation of the olive processing generating the OMW. This effluent was characterized by physicochemical, microbiological, and agronomic properties; then, its agronomic valorisation was considered a sustainable development path. Regarding the OMW valorisation aspect, the first agronomic efficient way is the effluent spreading in olive fields allowing the resource recycling, and the legislation related to this practice is presented. The second agronomic issue of this effluent recycling is through its co-composting as an agro bio-waste and its use for windrow humidification, or its mix with the co-composed paste resulting from the OMW natural evaporation. Based on various studies, the effects of the compost issued from these co-composted bio-wastes on soil and olive trees are reported. This chapter covers recent sustainable management advances of olive oil bio-waste processing. Therefore, current knowledge focusing on olive mill effluent relevant processes for agronomic valorization in circular economic perspectives is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

DM:

Dry matter

Gs:

Stomatal conductance

OMW:

Olive mill wastewater

Pn:

Photosynthesis

References

  • Abichou, M., Labiadh, W., Cornelis, D., Gabriels, D., Ben Rouina, B., Taamallah, H., & Khatteli, H. (2009). The olive mills waste water (OMW) as an organic amendment for controlling wind erosion in Southern Tunisia by improving the soil surface structure. Journal of Arid Land Studies, 19, 343–346.

    Google Scholar 

  • Akratos, C. S., Tekerlekopoulou, A. G., Vasiliadou, I. A., & Vayenas, D. V. (2017). Cocomposting of olive mill waste for the production of soil amendments. Chapter 8. Olive Mill waste. Recent Advances for Sustainable Management, 161–182.

    Google Scholar 

  • Alburquerque, J. A., Gonzalez, J., Garcia, D., & Cegarra, J. (2007). Effects of a compost made from the solid by-product (“alperujo”) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.). Bioresource Technology, 98, 940–945.

    Article  CAS  PubMed  Google Scholar 

  • Al-Imoor, H., Raed, I., Husam, H. Z., Oday, Z., & Motasem, Z. (2017). Germination of seeds grown on medium from olive mill liquid waste, olive mill pomace, and stone sludge waste. Chemistry and Materials Research, 9, 2224–3224.

    Google Scholar 

  • Altieri, R., & Esposito, A. (2008). Olive orchard amended with two experimental olive mill wastes mixtures: Effects on soil organic carbon, plant growth and yield. Bioresource Technology, 99, 8390–8393.

    Article  CAS  PubMed  Google Scholar 

  • Ammar, E., & Ben Rouina, B. (1999). Potential horticultural utilization of olive oil processing waste water. Acta Horticulturae, 472, 741–744.

    Article  Google Scholar 

  • Ammar, E., Nasri, M., & Medhioub, K. (2005). Isolation of Enterobacteria able to degrade simple aromatic compounds from the wastewater of olive oil extraction. World Journal of Microbiology and Biotechnology, 21, 251–259.

    Article  Google Scholar 

  • Ayoub, S., Al-Absi, K., Al-Shdiefat, S., Al-Majali, D., & Hijazean, D. (2014). Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Scientia Horticulturae, 175, 160–166.

    Article  Google Scholar 

  • Barbera, A. C., Maucieri, C., Cavallaro, V., Ioppolo, A., & Spagna, G. (2013). Effects of spreading olive mill wastewater on soil properties and crops a review. Agricultural Water Management, 119, 43–53.

    Article  Google Scholar 

  • Bargaoui, M., Jellali, S., Azzaz, A. A., Jeguirim, M., & Akrout, H. (2020). Optimization of hybrid treatment of olive mill wastewaters through impregnation onto raw cypress sawdust and electrocoagulation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08907-w

  • Bargougui, L., Guergueb, Z., Chaieb, M., Braham, M., & Mekki, A. (2019). Agro-physiological and biochemical responses of Sorghum bicolor in soil amended by olive mill wastewater. Agricultural Water Management, 212, 60–67.

    Article  Google Scholar 

  • Belaqziz, M., El-Abbassi, A., Lakhal, E., Agrafioti, E., & Galanakis, C. M. (2016). Agronomic application of olive mill wastewater: Effects on maize production and soil properties. Journal of Environmental Management, 171, 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Ben Ahmed, C., Ben Rouina, B., & Boukhris, M. (2007). Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Scientia Horticulturae, 113, 267–277.

    Article  Google Scholar 

  • Ben Rouina, B., Gargouri, K., Abichou, M., & Taamallah, H. (2006). Mill wastewater as an ecological fertilizer for olive tree orchards. Proceeding of Second International Seminar ‘Biotechnology and Quality of Olive Tree Products Around the Mediterranean Basin, 2, 139–142.

    Google Scholar 

  • Ben Youssef, N., Ben Youssef, N., Abaza, L., Naeit, M. S., Debbech, N., & Abdelly, C. (2012). Influence of the site of cultivation on Chétoui olive (Olea europaea L.) oil quality. Plant Production Science, 15, 228–237.

    Article  Google Scholar 

  • Boskou, D. (1996). History and characteristics of the olive tree. In Olive oil: Chemistry and technology (pp. 1–11). AOCS Press.

    Google Scholar 

  • Buchmann, C., Felten, A., Peikert, B., Munoz, K., Bandow, N., Dag, A., & Schaumann, G. E. (2015). Development of phtotoxicity and composition of soil treated with olive mill wastewater (OMW): An incubation study. Plant and Soil, 386, 99–112.

    Article  CAS  Google Scholar 

  • Cappelletti, G. M., Grilli, L., Nicoletti, G. M., & Russo, C. (2017). Innovations in the olive oil sector: A fuzzy multicriteria approach. Journal of Cleaner Production, 159, 95–105.

    Article  Google Scholar 

  • Caputo, A. C., Scacchia, F., & Pelagagge, P. M. (2003). Disposal of by-products in olive oil industry: Waste-to-energy solutions. Applied Thermal Engineering, 23, 197–214.

    Article  Google Scholar 

  • Casacchia, T., Sofo, A., Zelasco, S., Perri, E., & Toscano, P. (2012). In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse. Italian Journal of Agronomy, 7, 167–170.

    Article  Google Scholar 

  • Chaari, L., Elloumi, N., Gargouri, K., Bourouina, B., Michichi, T., & Kallel, M. (2014). Evolution of several soil properties following amendment with olive mill wastewater. Desalination and Water Treatment, 52, 2180–2186.

    Article  CAS  Google Scholar 

  • Chaari, L., Elloumi, N., Mseddi, S., Gargougri, K., Benrouina, B., Mechichi, T., & Kallel, M. (2015). Changes in soil macronutrients after a long-term application of olive mill wastewater. Journal of Agricultural Chemistry and Environment, 4, 1–13.

    Article  Google Scholar 

  • Chartzoulakis, K., Psarras, G., Moutsopoulou, M., & Stefanoudaki, E. (2006). Application of olive mill wastewater on olive orchards: Effects on soil properties, plant performance and the environment. Proceeding of Second International Seminar on “Biotechnology and Quality of Olive Tree Products Around the Mediterranean Basin”, 2, 37–42.

    Google Scholar 

  • Chartzoulakis, K., Psarras, G., Moutsopoulou, M., & Stefanoudaki, E. (2010). Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agriculture, Ecosystems and Environment, 138, 293–298.

    Article  Google Scholar 

  • Chatzistathis, T., & Koutsos, T. (2017). Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agricultural Water Management, 190, 55–64.

    Article  Google Scholar 

  • Chehab, H., Tekaya, M., Ouhibi, M., Gouiaa, M., Zakhama, H., Mahjoub, Z., Laamari, S., Sfina, H., Chihaoui, B., Boujnah, D., & Mechri, B. (2019). Effects of compost, olive mill wastewater and legume cover crops on soil characteristics, tree performance and oil quality of olive trees cv. Chemlali grown under organic farming system. Scientia Horticulturae, 253, 163–171.

    Article  CAS  Google Scholar 

  • Chowdhury, A. K. M. M. B., Akratos, C. S., Vayenas, D. V., & Pavlou, S. (2013). Olive mill waste composting: A review. International Biodeterioration and Biodegradation, 85, 108–119.

    Article  Google Scholar 

  • Chtourou, M., Ammar, E., Nasri, M., & Medhioub, K. (2004). Isolation of a yeast Trichosporon cutaneum, able to use low molecular weight phenolic compounds; application to olive mill wastewater treatment. Journal of Chemical Technology and Biotechnology, 79, 869–878.

    Article  CAS  Google Scholar 

  • Conseil Oléicole International (1998). L’olivier, l’huile, l’olive, la gastronomie. Ed. COI, Madrid, 130 p.

    Google Scholar 

  • Conseil Oléicole International (2015). Norme commerciale applicable aux huiles d’olive et aux huiles de grignons d’olive. Norme COI/T.15/NC N°3.

    Google Scholar 

  • Council Regulation (EC) No 1513/2001 of 23 July (2001). Amending Regulations No 136/66/EEC and (EC) No 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil.

    Google Scholar 

  • Dabbou, S., Issaoui, M., Servili, M., Taticchi, A., Sifi, S., Francesco Montedoro, G., & Hammami, M. (2009). Characterisation of virgin olive oils from European olive cultivars introduced in Tunisia. European Journal of Lipid Science and Technology, 111, 392–401.

    Article  CAS  Google Scholar 

  • Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., & Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies, a review. Process Biochemistry, 48, 1532–1552.

    Article  CAS  Google Scholar 

  • Di Bene, C., Pellegrino, E., Debolini, M., Silvestri, N., & Bonari, E. (2013). Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biology and Biochemistry, 56, 21–30.

    Article  Google Scholar 

  • El Hassani, F. Z., Zinedine, A., Mdaghri Alaoui, S., Merzouki, M., & Benlemlih, M. (2010). Use of olive mill wastewater as an organic amendment for Mentha spicata L. Industrial Crops and Products, 32, 343–348.

    Article  Google Scholar 

  • Ferri, D., Convertini, G., Montemurro, F., Rinaldi, M., & Rana, G. (2002). Olive wastes spreading in Southern Italy: Effects on crops and soil. In Proceedings of 12th ISCO conference, May 26–31, Beijing, China (pp. 593–600).

    Google Scholar 

  • Galanakis, C. M., & Kotsiou, K. (2017). Recovery of bioactive compounds from olive mill waste. In C. M. Galanakis (Ed.), Olive Mill Waste. Recent advances for sustainable management (pp. 205–229). Academic.

    Chapter  Google Scholar 

  • Galliou, F., Markakis, N., Fountoulakis, M. S., Nikolaidis, N., & Manios, T. (2018). Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting. Waste Management, 75, 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., & Ammar, E. (2009). Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Journal of Hazardous Materials, 161, 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Hachicha, S., Chtourou, M., Medhioub, K., & Ammar, E. (2006). Compost of poultry manure and olive mill wastes as an alternative fertilizer. Agronomy for Sustainable Development, 26, 135–142.

    Article  Google Scholar 

  • Haddad, K., Jeguirim, M., Jellali, S., Thevenin, N., Ruidavets, L., & Limousy, L. (2021). Biochar production from Cypress sawdust and olive mill wastewater: Agronomic approach. Science of the Total Environment, 752(p), 141713.

    Article  CAS  Google Scholar 

  • Hamimed, S., Landoulsi, A., & Chatti, A. (2021). The bright side of olive mill wastewater: Valuables bioproducts after bioremediation. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03145-0

  • Hanieh, A. A., Karaeen, M., & Hasan, A. (2020). Towards a sustainability model for olive sector in Palestine. Procedia Manufacturing, 43, 269–276.

    Article  Google Scholar 

  • Hemmat, A., Aghilinategh, N., Rezainejad, Y., & Sadeghi, M. (2010). Long term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil and Tillage Research, 108, 43–50.

    Article  Google Scholar 

  • International Olive Oil Council. (2016). http: www.internationaloliveoil.org.

  • Japan International Cooperation Agency-JICA (1993).The study on waste treatment recycling plan for selected industries in the region of Sfax in the Republic of Tunisia. Ed. JICA, Tokyo, pp. 4–28/4–42.

    Google Scholar 

  • Jarboui, R., Magdich, S., Jarboui Ayadi, R., Gargouri, A., Gharsallah, N., & Ammar. E. (2012). Aspergillus niger P6 and Rhodotorula mucilaginosa CH4 used for olive mill wastewater (OMW) biological treatment in single pure and successive cultures. Environmental Technology, 34, 629–636.

    Google Scholar 

  • Jarboui, R., Sellami, F., Kharroubi, A., Azri, C., Gharsallah, N., & Ammar, E. (2010). Olive mill wastewater evaporation management using PCA method case study of natural degradation in stabilization ponds (Sfax, Tunisia). Journal of Hazardous Materials, 176, 992–1005.

    Article  CAS  PubMed  Google Scholar 

  • Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N., & Ammar, E. (2008). Olive mill wastewater stabilization in open air ponds: impact on clay-sandy soil. Bioresource Technology, 99, 7699–7708.

    Article  CAS  PubMed  Google Scholar 

  • Journal Officiel de la République Tunisienne, JORT du 8 mars (2013). Décret n° 2013–1308 du 26 février 2013, fixant les conditions et les modalités de gestion des margines provenant des huileries en vue de leur utilisation dans le domaine agricole (pp. 924–927).

    Google Scholar 

  • Karpouzas, D. G., Ntougias, S., Iskidou, E., Rousidou, C., Papadopoulou, K. K., Zervakis, G. I., & Ehaliotis, C. (2010). Olive mill wastewater affects the structure of soil bacterial communities. Applied Soil Ecology, 45, 101–111.

    Article  Google Scholar 

  • Kartas, A., Chliyeh, M., Touati, J., Ouazzani Touhami, A., Gaboun, F., Benkirane, R., & Douira, A. (2015). Evaluation of oil richness or technological characteristics of introduced varieties and local types of olive trees (Olea europaea L.) grown in Ouazzane areas (Northern Morocco). Biolife, 3(2), 499–507.

    Article  Google Scholar 

  • Kavvadias, V., Doula, M., & Theocharopoulos, S. (2014). Long-term effects on soil of the disposal of olive mill waste waters (OMW). Environmental Forensics, 15, 37–51.

    Article  Google Scholar 

  • Kotsou, M., Mari, I., Lasaridi, K., Chatzipavlidis, I., Balis, C., & Kyriacou, A. (2004). The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Applied Soil Ecology, 26, 113–121.

    Article  Google Scholar 

  • Lanza, B., Di Serio, M. G., & Di Giovacchino, L. (2020). Microbiological and chemical modifications of soil cultivated with grapevine following agronomic application of olive mill wastewater. Water Air Soil Pollution, 231, 86.

    Article  CAS  Google Scholar 

  • Lee, Z. S., Chin, S. Y., Lim, J. W., Witoon, T., & Cheng, C. K. (2019). Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environmental Technology and Innovation, 15, 100377.

    Article  Google Scholar 

  • Lozano-García, B., Parras-Alcántara, L., & del Toro Carrillo de Albornoz, M. (2011). Effects of oil mill wastes on surface soil properties, runoff and soil losses in traditional olive groves in southern Spain. Catena, 85, 187–193.

    Article  Google Scholar 

  • Magdich, S., Abid, W., Jarboui, R., Ben Rouina, B., Boukhris, M., & Ammar, E. (2016). Effects of long-term olive mill wastewater spreading on the physiological and biochemical responses of adult Chemlali olive trees (Olea europaea L.). Ecological Engineering, 97, 122–129.

    Article  Google Scholar 

  • Magdich, S., Ben Ahmed, C., Boukhris, M., Ben Rouina, B., & Ammar, E. (2015). Olive mill wastewater spreading effects on productivity and oil quality of adult Chemlali (Olea europaea L.) in the South of Tunisia. International Journal of Agronomy and Agricultural Research, 6, 56–67.

    Google Scholar 

  • Magdich, S., Ben Ahmed, C., Jarboui, R., Ben Rouina, B., Boukhris, M., & Ammar, E. (2013). Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere, 93, 1896–1903.

    Article  CAS  PubMed  Google Scholar 

  • Magdich, S., Ben Rouina, B., & Ammar, E. (2020). Olive Mill wastewater agronomic valorization by its spreading in olive grove. Waste and Biomass Valorization., 11, 1359–1372.

    Article  CAS  Google Scholar 

  • Magdich, S., Jarboui, R., Ben Rouina, B., Boukhris, M., & Ammar, E. (2012). A yearly spraying of olive mill wastewater on agricultural soil over six successive years: Impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts. Science of the Total Environment, 430, 209–216.

    Article  CAS  Google Scholar 

  • Mahmoud, M., Janssen, M., Haboub, N., Nassour, A., & Lennartz, B. (2010). The impact of olive mill wastewater application on flow and transport properties in soils. Soil Tillage Research, 107, 36–41.

    Article  Google Scholar 

  • Majbar, Z., Lahlou, K., Ben Abbou, M., Ammar, E., Triki, A., Abid, W., Nawdali, M., Bouka, H., Taleb, M., El Haji, M., & Rais, Z. (2018). Co-composting of olive mill waste and wine processing waste: An application of compost as soil Amendment. Journal of Chemistry, 10, 1–9.

    Article  Google Scholar 

  • Martínez-Gallardo, M. R., López, M. G., Jurado, M. M., Suárez-Estrella, F., López-González, J. A., Sáez, J. A., Moral, R., & Moreno, J. (2020). Bioremediation of olive mill wastewater sediments in evaporation ponds through in situ composting assisted by bioaugmentation. Science of the Total Environment, 703, 135537.

    Article  Google Scholar 

  • Masmoudi, S., Magdich, S., Rigane, H., Medhioub, K., Rebai, A., & Ammar, E. (2020). Effects of compost and manure application rate on the soil physico-chemical layers properties and plant productivity. Waste and Biomass Valorization, 11, 1883–1894.

    Article  CAS  Google Scholar 

  • Mechri, B., Chehab, H., Attia, F., Mariem, F. B., Braham, M., & Hammami, M. (2010). Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. European Journal of Soil, 46, 312–318.

    Article  Google Scholar 

  • Mechri, B., Cheheb, H., Boussadia, O., Attia, F., Ben Mariem, F., Braham, M., & Hammami, M. (2011). Effects of agronomic application of olive mill wastewaterin a field of olive trees on carbohydrate profiles, chlorophyll fluorescence and mineral nutrient content. Environmental and Experimental Botany, 71, 184–191.

    Article  CAS  Google Scholar 

  • Mechri, B., Echbili, A., Issaoui, M., Braham, M., Elhadj, S. B., & Hammami, M. (2007). Short-term effects in soil microbial community following agronomic application of olive mill wastewaters in a field of olive trees. Applied Soil Ecology, 36, 216–223.

    Article  Google Scholar 

  • Meftah, O., Guergueb, Z., Brahama, M., Sayadi, S., & Mekki, A. (2019). Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agricultural Water Management, 212, 119–125.

    Article  Google Scholar 

  • Mekki, A., Aloui, A., Guergueb, Z., & Braham, M. (2018). Agronomic valorization of olive mill wastewaters: Effects on Medicago sativa growth and soil characteristics. Clean – Soil, Air, Water, 46, 1800100.

    Article  Google Scholar 

  • Mekki, A., Dhouib, A., Feki, F., & Sayadi, S. (2013). Review: Effects of olive mill wastewater application on soil properties and plants growth. International Journal of Recycling Organic Waste in Agriculture, 2, 1–7.

    Article  Google Scholar 

  • Mekki, A., Dhouib, A., & Sayadi, S. (2006a). Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiological Research, 161, 93–101.

    Article  PubMed  Google Scholar 

  • Mekki, H., Anderson, M., Ammar, E., Skerratt, G. R., & Ben Zina, M. (2006b). Olive oil mill waste water as a replacement for fresh water in the manufacture of fired clay bricks. Journal of Chemical Technology & Biotechnology, 81, 1419–1425.

    Article  CAS  Google Scholar 

  • Mekki, H., Anderson, M., Benzina, M., & Ammar, E. (2008). Valorization of olive mill wastewater by its incorporation in building bricks. Journal of Hazardous Materials, 158, 308–315.

    Article  CAS  PubMed  Google Scholar 

  • Miglietta, P. P., Micale, R., Sciortino, R., Caruso, T., & Giallanza antonio, A., & La Scalia, G. (2019). The sustainability of olive orchard planting management for different harvesting techniques: An integrated methodology. Journal of Cleaner Production, 238, 117989.

    Article  Google Scholar 

  • Nasini, L., Gigliotti, G., Balduccini, M. A., Federici, E., Cenci, G., & Proietti, P. (2013). Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity. Agriculture Ecosystems and Environment, 164, 292–297.

    Article  Google Scholar 

  • Negro, M. J., Manzanares, P., Ruiz, E., Castro, E., & Ballesteros, M. (2017). The biorafinery concept for the industrial valorization of residues from olive oil industry. In C. M. Galanakis (Ed.), Olive Mill waste. Recent advances for sustainable management (pp. 57–78). Academic.

    Chapter  Google Scholar 

  • Official Journal of the European Communities (2001). Council Regulation (EC) No 1513/2001 of 23 July 2001 amending Regulations No 136/66/EEC and (EC) No 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil, L201/4-L204/7.

    Google Scholar 

  • Paredes, M. J., Monteoliva-Sannchez, M., Moreno, E., Perez, J., Ramos-Cormenzana, A., & Martinez, J. (1987). Effect of waste waters from olive oil extraction plants on the bacterial population of soil. Chemosphere, 15, 659–664.

    Article  Google Scholar 

  • Piotrowska, A., Iamarino, G., Rao, M. A., & Gianfreda, L. (2006). Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biology and Biochemistry, 38, 600–610.

    Article  CAS  Google Scholar 

  • Piotrowska, A., Rao, M. A., Scotti, R., & Gianfreda, L. (2011). Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma, 161, 8–17.

    Article  CAS  Google Scholar 

  • Potenz, D., Rigetti, V., & Valpolicella, M. (1980). Effetto inquinante delle acque reflue della lavorazione delle olive su terreno agrario. Inquinamento, 3, 65–68.

    Google Scholar 

  • Proietti, P., Federici, E., Fidati, L., Scargetta, S., Massaccesi, L., Nasini, L., Regni, L., Ricci, A., Cenci, G., & Gigliotti, G. (2015). Effects of amendment with oil mill waste and its derived-compost on soil chemical and microbiological characteristics and olive (Olea europaea L.) productivity. Agriculture Ecosystems and Environment, 207, 51–60.

    Article  CAS  Google Scholar 

  • Proietti, P., Paliotti, A., Tombesi, A., & Cenci, G. (1995). Chemical and microbiological modifications of two different cultivated soils induced by olive oil waste water administration. International Journal of Agricultural Sciences, 125, 160–171.

    Google Scholar 

  • Ramos-Cormenzana, A., Juarez-Jimenez, B., & Garcia, P. (1996). Antimicrobial activity of olive mill waste waters (Alpechin) and biotransformed olive mill waste water. International, Biodeteroration and Biodegradation, 38, 283–290.

    Article  Google Scholar 

  • Regni, L., Gigliotti, G., Nasini, L., & Proietti, P. (2017). Reuse of olive mill waste as soil amendment. In C. M. Galanakis (Ed.), Olive Mill waste. Recent advances for sustainable management (pp. 97–118). Academic.

    Chapter  Google Scholar 

  • Rigane, H., Chtourou, M., Mahmoud, I. B., Medhioub, K., & Ammar, E. (2015). Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia). Waste Management and Research, 33, 73–80.

    Article  PubMed  Google Scholar 

  • Rigane, H., & Medhioub, K. (2011). Co-composting of olive mill wastewater with manure and agro-industrial wastes. Compost Science and Utilization, 19, 129–134.

    Article  Google Scholar 

  • Riolfatti, M. (1983). Criteri di valutazione igienico-sanitaria per corsi di acqua per l’irrigazione, con riferimento ai fiumi Guà, Fratta-Gorzone e Frassine, della regione Veneto. L’igiene moderna, 80, 163–174.

    CAS  Google Scholar 

  • Roig, A., Cayuela, M. L., & Sanchez-Monedero, M. A. (2006). An overview on olive mil wastes and their valorisation methods. Waste Management, 26, 960–969.

    Article  CAS  PubMed  Google Scholar 

  • Romero-Gámez, M., Castro-Rodríguez, J., & Suárez-Rey, E. M. (2017). Optimization of olive growing practices in Spain from a life cycle assessment perspective. Journal of Cleaner Production, 149, 25–37.

    Article  Google Scholar 

  • Rouina, Y. B., Zouari, M., Zouari, N., Ben Rouina, B., & Bouaziz, M. (2020). Olive tree (Olea europaea L. cv. Zelmati) grown in hot desert climate: Physio biochemical responses and olive oil quality. Scientia Horticulturae, 261, 108915.

    Article  CAS  Google Scholar 

  • Saadi, I., Laor, Y., Raviv, M., & Medina, S. (2007). Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere, 66, 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Sáez, J. A., Pérez-Murcia, M. D., Vico, A., Martínez-Gallardo, M. R., Andreu-Rodríguez, F. J., López, M. J., Bustamante, M. A., Sanchez-Hernandez, J. C., Moreno, J., & Moral, R. (2021). Olive mill wastewater-evaporation ponds long term stored: Integrated assessment of in situ bioremediation strategies based on composting and vermicomposting. Journal of Hazardous Materials, 402, 123481.

    Article  PubMed  Google Scholar 

  • Sierra, J., Marti, E., Garau, M. A., & Cruaňas, R. (2007). Effects of the agronomic use of olive oil mill wastewater: Field experiment. Science of the Total Environment, 378, 90–94.

    Article  CAS  Google Scholar 

  • Skaltsounis, A. L., Argyropoulou, A., & Aligiannis, N. (2015). Recovery of high added value compounds from olive tree products and olive processing by-products. In D. Bosku (Ed.), Olive, olive oil bioactive constituents (pp. 333–356). AOCS Press.

    Chapter  Google Scholar 

  • Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., & Galanakis, C. M. (2017). Olive oil production sector: Environmental effects and sustainability challenges. In C. M. Galanakis (Ed.), Olive Mill Waste. Recent advances for sustainable management (pp. 1–28). Academic.

    Google Scholar 

  • Tomati, U., Galli, E., Pasetti, L., & Volterra, E. (1996). Olive-mill wastewater bioremediation: evolution of a composting process and agronomic value of the end product. In Marco de Bertoldi, Paolo Sequi, Bert Lemmes, & Tiziano Papi (Eds.), The science of composting. pp. 637–647.

    Google Scholar 

  • Toscano, P., & Montemurro, F. (2012). Olive mill by-products management. In I. Muzzalupo (Ed.), (pp. 173–200). Olive germ plasm-The olive cultivation, table olive and olive oil industry in Italy, In Tech Open Access Publisher.

    Google Scholar 

  • Zagklis, D. P., Arvaniti, E. C., Papadakis, V. G., & Paraskeva, C. A. (2013). Sustainability analysis and benchmarking of olive mill wastewater treatment methods. Journal of Chemical Technology & Biotechnology, 88, 742–750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magdich, S., Ammar, E. (2022). Agronomic Olive Bio-waste Management: Combination of Olive Mill Wastewater Spreading and Compost Amendment – Effects on Soil Properties and Olive Tree Performance. In: Ramadan, M.F., Farag, M.A. (eds) Mediterranean Fruits Bio-wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-84436-3_5

Download citation

Publish with us

Policies and ethics