Skip to main content

Normal Growth of the Thorax

  • Chapter
  • First Online:
The Growing Spine

Abstract

The study of the normal thorax is important for a better understanding of the development and function of the child as well as of the many related critical internal structures, including the spine, spinal cord, heart, lungs, abdominal organs, and diaphragm. The thorax is a key component of the respiratory pump, which includes the rib cage, accessory muscles, diaphragm, abdominal muscles, and spine. Thoracic growth and spine growth are influenced by each other and are interdependent. The infant’s chest is an inverted funnel-shaped structure as well as circular in cross section compared with the adult. With increasing growth and maturity, the chest becomes more barrel shaped, with greater transverse width in the mid-thoracic spine. From osteological studies, there is symmetry and coupled growth between the upper and lower thoracic ribs. The mid-thoracic ribs grow linearly, mimicking the rapid growth of the distal femur, and create an increase in volume by the mathematical representation of a logarithmic spiral, similar to how other rigid biological structures increase their volume. The diaphragm is unique in mammals with several discrete but interrelated functions. The sternum has a different embryonic origin than the posterior aspects of the thorax, ribs and vertebrae, and it contributes greatly to the development and stability of the thorax.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BD:

Base diameter

CT:

Computerized tomography

EOS:

Early-onset scoliosis

MRI:

Magnetic resonance imaging

OCL:

Outer costal length

REM:

Rapid eye movement

References

  1. Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013;4(4):167–74.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dimeglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012;21(1):64–70.

    Article  PubMed  Google Scholar 

  3. Dimeglio A. Growth of the spine before age 5 years. J Pediatr Orthop B. 1993;21:102–7.

    Google Scholar 

  4. Gollogly S, Smith JT, White SK, Firth S, White K. The volume of lung parenchyma as a function of age: a review of 1050 normal CT scans of the chest with three-dimensional volumetric reconstruction of the pulmonary system. Spine (Phila Pa 1976). 2004;29(18):2061–6.

    Article  Google Scholar 

  5. Sandoz B, Badina A, Laporte S, Lambot K, Mitton D, Skalli W. Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood. Med Biol Eng Comput. 2013;51(9):971–9.

    Article  PubMed  Google Scholar 

  6. History. SNMoN. What does it mean to be human? Washington DC. Accessed 21 June 2020. http://humanorigins.si.edu/evidence/human-fossils/fossils.

  7. Openshaw P, Edwards S, Helms P. Changes in rib cage geometry during childhood. Thorax. 1984;39(8):624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ward ME, Ward JW, Macklem PT. Analysis of human chest wall motion using a two-compartment rib cage model. J Appl Physiol (1985). 1992;72(4):1338–47.

    Google Scholar 

  9. García-Martínez D, Recheis W, Bastir M. Ontogeny of 3D rib curvature and its importance for the understanding of human thorax development. Am J Phys Anthropol. 2016;159(3):423–31.

    Article  PubMed  Google Scholar 

  10. Kapandji AI. Physiology of the Joints. Volume 3. The Spinal Column, Pelvic Girdle and Head. United Kingdom. March 25, 2019. Handspring Publishing Limited.

    Google Scholar 

  11. Sham ML, Zander T, Rohlmann A, Bergmann G. Effects of the rib cage on thoracic spine flexibility. Biomed Tech (Berl). 2005;50(11):361–5.

    Article  CAS  Google Scholar 

  12. Kemper AR, McNally C, Pullins CA, Freeman LJ, Duma SM, Rouhana SM. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests. Stapp Car Crash J. 2007;51:235–73.

    PubMed  Google Scholar 

  13. Borkowski SL, Tamrazian E, Bowen RE, Scaduto AA, Ebramzadeh E, Sangiorgio SN. Challenging the conventional standard for thoracic spine range of motion: a systematic review. JBJS Rev. 2016;4(4):e51–e511.

    Article  PubMed  Google Scholar 

  14. Watkins R, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, et al. Stability provided by the sternum and rib cage in the thoracic spine. Spine (Phila Pa 1976). 2005;30(11):1283–6.

    Article  Google Scholar 

  15. Mannen EM, Friis EA, Sis HL, Wong BM, Cadel ES, Anderson DE. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments. J Mech Behav Biomed Mater. 2018;84:258–64.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mannen EM, Arnold PM, Anderson JT, Friis EA. Influence of sequential Ponte osteotomies on the human thoracic spine with a rib cage. Spine Deform. 2017;5(2):91–6.

    Article  PubMed  Google Scholar 

  17. McMaster MJ, McMaster ME. Does an internal thoracoplasty correct and prevent a reassertion of the Rib Cage deformity after spine surgery for an adolescent idiopathic thoracic scoliosis greater than 70 degrees. Spine Deform. 2016;4(1):40–7.

    Article  PubMed  Google Scholar 

  18. Bastir M, García Martínez D, Recheis W, Barash A, Coquerelle M, Rios L, et al. Differential growth and development of the upper and lower human thorax. PLoS One. 2013;8(9):e75128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Reuver S, Brink RC, Homans JF, Kruyt MC, van Stralen M, Schlösser TPC, et al. The changing position of the center of mass of the thorax during growth in relation to pre-existent vertebral rotation. Spine (Phila Pa 1976). 2019;44(10):679–84.

    Article  Google Scholar 

  20. Matsubayashi J, Okuno K, Fujii S, Ishizu K, Yamada S, Yoneyama A, et al. Human embryonic ribs all progress through common morphological forms irrespective of their position on the axis. Dev Dyn. 2019;248(12):1257–63.

    Article  PubMed  Google Scholar 

  21. Okuno K, Ishizu K, Matsubayashi J, Fujii S, Sakamoto R, Ishikawa A, et al. Rib cage morphogenesis in the human embryo: a detailed three-dimensional analysis. Anat Rec (Hoboken). 2019;302(12):2211–23.

    Article  Google Scholar 

  22. Weaver AA, Schoell SL, Nguyen CM, Lynch SK, Stitzel JD. Morphometric analysis of variation in the sternum with sex and age. J Morphol. 2014;275(11):1284–99.

    Article  PubMed  Google Scholar 

  23. Schwend RM, Schmidt JA, Reigrut JL, Blakemore LC, Akbarnia BA. Patterns of rib growth in the human child. Spine Deform. 2015;3(4):297–302.

    Article  PubMed  Google Scholar 

  24. Dunnill MS. Postnatal growth of the lung, 1972. pp. 239–333.

    Google Scholar 

  25. Thurlbeck WM. Postnatal human lung growth. Thorax. 1982;37(8):564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bush A. Lung development and aging. Ann Am Thorac Soc. 2016;13(Suppl 5):S438–S46.

    Article  PubMed  Google Scholar 

  27. Butler JP, Loring SH, Patz S, Tsuda A, Yablonskiy DA, Mentzer SJ. Evidence for adult lung growth in humans. N Engl J Med. 2012;367(3):244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emans JB, Ciarlo M, Callahan M, Zurakowski D. Prediction of thoracic dimensions and spine length based on individual pelvic dimensions in children and adolescents: an age-independent, individualized standard for evaluation of outcome in early onset spinal deformity. Spine (Phila Pa 1976). 2005;30(24):2824–9.

    Article  Google Scholar 

  29. Erkula G, Sponseller PD, Kiter AE. Rib deformity in scoliosis. Eur Spine J. 2003;12(3):281–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grivas TB, Burwell GR, Vasiliadis ES, Webb JK. A segmental radiological study of the spine and rib--cage in children with progressive infantile idiopathic scoliosis. Scoliosis. 2006;1:17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jones RS, Kennedy JD, Hasham F, Owen R, Taylor JF. Mechanical inefficiency of the thoracic cage in scoliosis. Thorax. 1981;36(6):456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stokes IA, Dansereau J, Moreland MS. Rib cage asymmetry in idiopathic scoliosis. J Orthop Res. 1989;7(4):599–606.

    Article  CAS  PubMed  Google Scholar 

  33. Tsirikos AI, McMaster MJ. Congenital anomalies of the ribs and chest wall associated with congenital deformities of the spine. J Bone Joint Surg Am. 2005;87(11):2523–36.

    PubMed  Google Scholar 

  34. Machida M, Yamada H, Yamada T, Kimura J, Saito M, Shibasaki K. Rib length in experimental scoliosis induced by pinealectomy in chickens. Spine (Phila Pa 1976). 2005;30(23):E692–6.

    Article  Google Scholar 

  35. Kubota K, Doi T, Murata M, Kobayakawa K, Matsumoto Y, Harimaya K, et al. Disturbance of rib cage development causes progressive thoracic scoliosis: the creation of a nonsurgical structural scoliosis model in mice. J Bone Joint Surg Am. 2013;95(18):e130.

    Article  PubMed  Google Scholar 

  36. Kasai Y, Takegami K, Uchida A. Length of the ribs in patients with idiopathic scoliosis. Arch Orthop Trauma Surg. 2002;122(3):161–2.

    Article  PubMed  Google Scholar 

  37. Anderson M, Messner MB, Green WT. Distribution of lengths of the normal femur and tibia in children from one to eight years of age. J Bone Joint Surg Am. 1964;46:1197–202.

    Article  CAS  PubMed  Google Scholar 

  38. Mishra SK. Fitting an origin-displaced logarithmic spiral to empirical data by differential evolution method of global optimization. 21 November 2006. p. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=946123.

  39. De Troyer A, Kirkwood PA, Wilson TA. Respiratory action of the intercostal muscles. Physiol Rev. 2005;85(2):717–56.

    Article  PubMed  Google Scholar 

  40. Ferguson J, Kishan S, Blakemore L, Schwend RM, Reigrut JL, Schmidt JA, et al. Posterior rib geomety-what is the ideal site for proximal rib anchors in growing rod surgery? 50th anniversary of the international Phillip Zorab symposium; London, 20-21 June 2013.

    Google Scholar 

  41. O'Neal ML, Dwornik JJ, Ganey TM, Ogden JA. Postnatal development of the human sternum. J Pediatr Orthop. 1998;18(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  42. Kenanidis E, Athanasiadis DI, Geropoulos G, Kakoulidis P, Potoupnis M, Tsiridis E. Does the sternum play a role in the aetiopathogenesis of adolescent idiopathic scoliosis? Preliminary data of a new theory. Hippokratia. 2018;22(4):173–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bayaroğulları H, Yengil E, Davran R, Ağlagül E, Karazincir S, Balcı A. Evaluation of the postnatal development of the sternum and sternal variations using multidetector CT. Diagn Interv Radiol. 2014;20(1):82–9.

    PubMed  Google Scholar 

  44. Brasiliense LB, Lazaro BC, Reyes PM, Dogan S, Theodore N, Crawford NR. Biomechanical contribution of the rib cage to thoracic stability. Spine (Phila Pa 1976). 2011;36(26):E1686–93.

    Article  Google Scholar 

  45. Fotiadis E, Elias F, Grigoriadou A, Anthi G, Kapetanos G, George K, et al. The role of sternum in the etiopathogenesis of Scheuermann disease of the thoracic spine. Spine (Phila Pa 1976). 2008;33(1):E21–4.

    Article  Google Scholar 

  46. de Vries J, Yntema JL, van Die CE, Crama N, Cornelissen EA, Hamel BC. Jeune syndrome: description of 13 cases and a proposal for follow-up protocol. Eur J Pediatr. 2010;169(1):77–88.

    Article  PubMed  Google Scholar 

  47. Imai Y, Kitanishi R, Saiki Y, Takeda A, Tachi M. Distraction osteogenesis of the sternum for thoracic expansion in a severe case of Jeune syndrome: a preliminary report. J Plast Surg Hand Surg. 2016;50(3):180–3.

    Article  PubMed  Google Scholar 

  48. Conroy E, Eustace N, McCormack D. Sternoplasty and rib distraction in neonatal Jeune syndrome. J Pediatr Orthop. 2010;30(6):527–30.

    Article  PubMed  Google Scholar 

  49. Park S, Kang CH, Park IK, Kim YT. Successful recovery from respiratory failure by external distraction sternoplasty in a patient with Jeune syndrome. J Thorac Cardiovasc Surg. 2015;149(3):e53–5.

    Article  PubMed  Google Scholar 

  50. Park CH, Kim TH, Haam SJ, Lee S. Rib overgrowth may be a contributing factor for pectus excavatum: evaluation of prepubertal patients younger than 10years old. J Pediatr Surg. 2015;50(11):1945–8.

    Article  PubMed  Google Scholar 

  51. Park CH, Kim TH, Haam SJ, Jeon I, Lee S. The etiology of pectus carinatum involves overgrowth of costal cartilage and undergrowth of ribs. J Pediatr Surg. 2014;49(8):1252–8.

    Article  PubMed  Google Scholar 

  52. Eisinger RS, Harris T, Rajderkar DA, Islam S. Against the overgrowth hypothesis: shorter costal cartilage lengths in pectus excavatum. J Surg Res. 2019;235:93–7.

    Article  PubMed  Google Scholar 

  53. Ward J. Physiology of breathing. Surgery. 2005;23:419–24.

    Google Scholar 

  54. Redding GJ. Early onset scoliosis: a pulmonary perspective. Spine Deform. 2014;2(6):425–9.

    Article  PubMed  Google Scholar 

  55. Perry SF, HR D. Interrelationship of static mechanical factors and anatomical structure in lung evolution. J Comp Physiol. 1980;138:321–34.

    Article  Google Scholar 

  56. Perry SF, Similowski T, Klein W, Codd JR. The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol. 2010;171(1):1–16.

    Article  PubMed  Google Scholar 

  57. Merrell AJ, Kardon G. Development of the diaphragm -- a skeletal muscle essential for mammalian respiration. FEBS J. 2013;280(17):4026–35.

    Article  CAS  PubMed  Google Scholar 

  58. De Troyer A, Loring SH. Actions of the respiratory muscles. In: C R, editor. The thorax, Part B Lung biology in health and disease series. 85. New York: Marcel Dekker; 1995. p. 535–64.

    Google Scholar 

  59. Campbell RM, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85(3):399–408.

    Article  PubMed  Google Scholar 

  60. Zhu F, Chu WC, Sun G, Zhu ZZ, Wang WJ, Cheng JC, et al. Rib length asymmetry in thoracic adolescent idiopathic scoliosis: is it primary or secondary? Eur Spine J. 2011;20(2):254–9.

    Article  PubMed  Google Scholar 

  61. Wong-Chung J, France J, Gillespie R. Scoliosis caused by rib fusion after thoracotomy for esophageal atresia. Report of a case and review of the literature. Spine (Phila Pa 1976). 1992;17(7):851–4.

    Google Scholar 

  62. Gilsanz V, Boechat IM, Birnberg FA, King JD. Scoliosis after thoracotomy for esophageal atresia. AJR Am J Roentgenol. 1983;141(3):457–60.

    Article  CAS  PubMed  Google Scholar 

  63. Marqués C, Pizones J, Sánchez-Márquez JM, Martín-Baldan M, Fernández-Baíllo N, Sánchez Pérez-Grueso FJ. Surgical treatment of scoliosis developed after extended chest wall resection due to Askin tumor during childhood. Spine Deform. 2019;7(1):180–5.

    Article  PubMed  Google Scholar 

  64. Romberg K, Fagevik Olsén M, Kjellby-Wendt G, Lofdahl Hallerman K, Danielsson A. Thoracic mobility and its relation to pulmonary function and rib-cage deformity in patients with early onset idiopathic scoliosis: a long-term follow-up. Spine Deform. 2020;8(2):257–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Schwend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwend, R.M., Akbarnia, B.A., Schmidt, J.A., Blakemore, L.C. (2022). Normal Growth of the Thorax. In: Akbarnia, B.A., Thompson, G.H., Yazici, M., El-Hawary, R. (eds) The Growing Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-84393-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84393-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84392-2

  • Online ISBN: 978-3-030-84393-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics