Skip to main content

Genetics of the Growing Spine

  • Chapter
  • First Online:
The Growing Spine
  • 1151 Accesses

Abstract

DNA is the blueprint of human life forms. Variations in DNA are the source of the phenotypic diversity in individuals as well as the hereditary diseases. With the advancement in the DNA sequencing technologies and the completion of the human genome project, we are able to detect various types of DNA variations in the genome, including single-nucleotide polymorphisms/variants, small insertions/deletions, and structural variations. The relationship between these genomic variations and the disease phenotypes has been explored based on different analytic strategies such as family-based and cohort-based. Basically, the former aims to detect the variations that are segregating with the disease phenotype within a family; The latter aims to identify the variations or the variations in genes that are enriched or recurrent in different patients, usually through a case–control approach. Early-onset scoliosis (EOS) is a clinical entity with extremely heterogeneous causes, which can be generally classified into congenital, neuromuscular, syndromic, and idiopathic scoliosis. A growing number of studies have demonstrated the important roles of genetic factors in EOS. Congenital scoliosis is caused by the impairment of somitogenesis during embryonic development. Neuromuscular scoliosis and syndromic scoliosis are often caused by genetic disorders affecting the neuromuscular system or the connective tissues. In contrast, idiopathic scoliosis represents a more complex subgroup of EOS, where polygenic and epigenetic factors have been suggestet. With international collaborations using well-defined and large sample size patient cohorts, genetic defects have been revealed in a large proportion of EOS patients and hopefully more in the future. Results from genetic studies of scoliosis could be translated into new guidelines/prediction models/therapies which help public health and clinical management of EOS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nussbaum RL, McInnes RR, Willard HF, Hamosh A. Thompson & Thompson genetics in medicine. Philadelphia: Elsevier; 2016.

    Google Scholar 

  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  3. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  CAS  PubMed  Google Scholar 

  4. Eichler EE. Genetic variation, comparative genomics, and the diagnosis of disease. N Engl J Med. 2019;381(1):64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes. Annu Rev Med. 2005;56:303–20.

    Article  CAS  PubMed  Google Scholar 

  6. International HapMap C. The international HapMap project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  7. Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis. 2019;14(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997;5(2):94–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lin M, Liu Z, Liu G, Zhao S, Li C, Chen W, et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med. 2020;8(1):e1023.

    Article  PubMed  Google Scholar 

  10. Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med. 2019;21(4):798–812.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  12. Ding X, Zhao S, Zhang Q, Yan Z, Wang Y, Wu Y, et al. Exome sequencing reveals a novel variant in NFX1 causing intracranial aneurysm in a Chinese family. J Neurointerv Surg. 2019;12:221.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang K, Zhao S, Zhang Q, Yuan J, Liu J, Ding X, et al. Whole-exome sequencing reveals known and novel variants in a cohort of intracranial vertebral-basilar artery dissection (IVAD). J Hum Genet. 2018;63(11):1119–28.

    Article  CAS  PubMed  Google Scholar 

  14. Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. elife. 2016;5:e20125.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14(7):483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Zhou Y, Liu S, Song X, Yang XZ, Fan Y, et al. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet. 2018;137(6–7):553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020;577(7789):179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Williams BA, Matsumoto H, McCalla DJ, Akbarnia BA, Blakemore LC, Betz RR, et al. Development and initial validation of the Classification of Early-Onset Scoliosis (C-EOS). J Bone Joint Surg Am. 2014;96(16):1359–67.

    Article  PubMed  Google Scholar 

  20. Gillingham BL, Fan RA, Akbarnia BA. Early onset idiopathic scoliosis. J Am Acad Orthop Surg. 2006;14(2):101–12.

    Article  PubMed  Google Scholar 

  21. El-Hawary R, Akbarnia BA. Early onset scoliosis - time for consensus. Spine Deform. 2015;3(2):105–6.

    Article  PubMed  Google Scholar 

  22. Skaggs DL, Guillaume T, El-Hawary R, Emans J, Mendelow M, Smith J. Early onset scoliosis consensus statement, SRS growing spine committee, 2015. Spine Deform. 2015;3(2):107.

    Article  Google Scholar 

  23. De Paepe A, Malfait F. The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet. 2012;82(1):1–11.

    Article  PubMed  Google Scholar 

  24. Carey JC, Viskochil DH. Neurofibromatosis type 1: a model condition for the study of the molecular basis of variable expressivity in human disorders. Am J Med Genet. 1999;89(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  25. Matsunami N, Smith B, Ballard L, Lensch MW, Robertson M, Albertsen H, et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1A. Nat Genet. 1992;1(3):176–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hedequist D, Emans J. Congenital scoliosis: a review and update. J Pediatr Orthop. 2007;27(1):106–16.

    Article  PubMed  Google Scholar 

  27. Connor JM, Conner AN, Connor RA, Tolmie JL, Yeung B, Goudie D. Genetic aspects of early childhood scoliosis. Am J Med Genet. 1987;27(2):419–24.

    Article  CAS  PubMed  Google Scholar 

  28. Wynne-Davies R. Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J Med Genet. 1975;12(3):280–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winter RB. Congenital scoliosis. Orthop Clin North Am. 1988;19(2):395–408.

    Article  CAS  PubMed  Google Scholar 

  30. Ingalls TH, Curley FJ. Principles governing the genesis of congenital malformations induced in mice by hypoxia. N Engl J Med. 1957;257(23):1121–7.

    Article  CAS  PubMed  Google Scholar 

  31. Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet. 2006;78(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  32. Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011;145(5):650–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet. 2004;74(6):1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL. Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet. 2010;18(6):674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  36. Erol B, Tracy MR, Dormans JP, Zackai EH, Maisenbacher MK, O'Brien ML, et al. Congenital scoliosis and vertebral malformations: characterization of segmental defects for genetic analysis. J Pediatr Orthop. 2004;24(6):674–82.

    Article  PubMed  Google Scholar 

  37. Fei Q, Wu Z, Wang H, Zhou X, Wang N, Ding Y, et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976). 2010;35(9):983–8.

    Article  Google Scholar 

  38. Giampietro PF, Raggio CL, Reynolds CE, Shukla SK, McPherson E, Ghebranious N, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet. 2005;68(5):448–53.

    Article  CAS  PubMed  Google Scholar 

  39. Giampietro PF, Raggio CL, Reynolds C, Ghebranious N, Burmester JK, Glurich I, et al. DLL3 as a candidate gene for vertebral malformations. Am J Med Genet A. 2006;140(22):2447–53.

    Article  PubMed  Google Scholar 

  40. Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med. 2015;372(4):341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lefebvre M, Duffourd Y, Jouan T, Poe C, Jean-Marcais N, Verloes A, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin Genet. 2017;91(6):908–12.

    Article  CAS  PubMed  Google Scholar 

  42. Takeda K, Kou I, Kawakami N, Iida A, Nakajima M, Ogura Y, et al. Compound heterozygosity for null mutations and a common Hypomorphic risk haplotype in TBX6 causes congenital scoliosis. Hum Mutat. 2017;38(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  43. Yang N, Wu N, Zhang L, Zhao Y, Liu J, Liang X, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet. 2019;28(4):539–47.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Wu N. Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) study, Yang N, Takeda K, Chen W, et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med. 2019;21(7):1548–58.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen W, Lin J, Wang L, Li X, Zhao S, Liu J, et al. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease. Hum Mutat. 2020;41(1):182–95.

    Article  PubMed  Google Scholar 

  46. Li Z, Shen J, Liang J, Sheng L. Congenital scoliosis in Smith-Magenis syndrome: a case report and review of the literature. Medicine (Baltimore). 2015;94(17):e705.

    Article  Google Scholar 

  47. Williams PG, Wetherbee JJ, Rosenfeld JA, Hersh JH. 20p11 deletion in a female child with panhypopituitarism, cleft lip and palate, dysmorphic facial features, global developmental delay and seizure disorder. Am J Med Genet A. 2011;155A(1):186–91.

    Article  CAS  PubMed  Google Scholar 

  48. Homans JF, de Reuver S, Heung T, Silversides CK, Oechslin EN, Houben ML, et al. The role of 22q11.2 deletion syndrome in the relationship between congenital heart disease and scoliosis. Spine J. 2020;20:956.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Murphy NA, Firth S, Jorgensen T, Young PC. Spinal surgery in children with idiopathic and neuromuscular scoliosis. What's the difference? J Pediatr Orthop. 2006;26(2):216–20.

    Article  PubMed  Google Scholar 

  50. Alman BA, Raza SN, Biggar WD. Steroid treatment and the development of scoliosis in males with duchenne muscular dystrophy. J Bone Joint Surg Am. 2004;86(3):519–24.

    Article  PubMed  Google Scholar 

  51. Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;(1):CD003725.

    Google Scholar 

  52. McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech. 2015;8(3):195–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heo YA. Golodirsen: first approval. Drugs. 2020;80(3):329–33.

    Article  PubMed  Google Scholar 

  54. Manning BM, Quane KA, Ording H, Urwyler A, Tegazzin V, Lehane M, et al. Identification of novel mutations in the ryanodine-receptor gene (RYR1) in malignant hyperthermia: genotype-phenotype correlation. Am J Hum Genet. 1998;62(3):599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Urwyler A, Deufel T, McCarthy T, West S. European Malignant Hyperthermia G. Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth. 2001;86(2):283–7.

    Article  CAS  PubMed  Google Scholar 

  56. Karol LA, Elerson E. Scoliosis in patients with Charcot-Marie-Tooth disease. J Bone Joint Surg Am. 2007;89(7):1504–10.

    Article  PubMed  Google Scholar 

  57. Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 2015;12(7):1169–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakai LY, Keene DR, Renard M, De Backer J. FBN1: the disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 2016;591(1):279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):8–26.

    Article  PubMed  Google Scholar 

  60. Dembure PP, Priest JH, Snoddy SC, Elsas LJ. Genotyping and prenatal assessment of collagen lysyl hydroxylase deficiency in a family with Ehlers-Danlos syndrome type VI. Am J Hum Genet. 1984;36(4):783–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sherman SL, Allen EG, Bean LH, Freeman SB. Epidemiology of down syndrome. Ment Retard Dev Disabil Res Rev. 2007;13(3):221–7.

    Article  PubMed  Google Scholar 

  62. Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet. 2007;370(9596):1443–52.

    Article  CAS  PubMed  Google Scholar 

  63. Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.

    Article  CAS  PubMed  Google Scholar 

  64. Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. Scientifica (Cairo). 2012;2012:152365.

    Google Scholar 

  65. Bashiardes S, Veile R, Allen M, Wise CA, Dobbs M, Morcuende JA, et al. SNTG1, the gene encoding gamma1-syntrophin: a candidate gene for idiopathic scoliosis. Hum Genet. 2004;115(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao S, Zhang Y, Chen W, Li W, Wang S, Wang L, et al. Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis (EOS). J Med Genet. 2020;58:41.

    Article  PubMed  Google Scholar 

  68. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371(9623):1527–37.

    Article  PubMed  Google Scholar 

  70. Wynne-Davies R. Familial (idiopathic) scoliosis. A family survey. J Bone Joint Surg Br. 1968;50(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  71. Cheung KM, Wang T, Qiu GX, Luk KD. Recent advances in the aetiology of adolescent idiopathic scoliosis. Int Orthop. 2008;32(6):729–34.

    Article  PubMed  Google Scholar 

  72. Wise CA, Barnes R, Gillum J, Herring JA, Bowcock AM, Lovett M. Localization of susceptibility to familial idiopathic scoliosis. Spine (Phila Pa 1976). 2000;25(18):2372–80.

    Article  CAS  Google Scholar 

  73. Chan V, Fong GC, Luk KD, Yip B, Lee MK, Wong MS, et al. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet. 2002;71(2):401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alden KJ, Marosy B, Nzegwu N, Justice CM, Wilson AF, Miller NH. Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine (Phila Pa 1976). 2006;31(16):1815–9.

    Article  Google Scholar 

  75. Ocaka L, Zhao C, Reed JA, Ebenezer ND, Brice G, Morley T, et al. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J Med Genet. 2008;45(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  76. Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–40.

    Article  CAS  PubMed  Google Scholar 

  77. Fan YH, Song YQ, Chan D, Takahashi Y, Ikegawa S, Matsumoto M, et al. SNP rs11190870 near LBX1 is associated with adolescent idiopathic scoliosis in southern Chinese. J Hum Genet. 2012;57(4):244–6.

    Article  CAS  PubMed  Google Scholar 

  78. Liu S, Wu N, Zuo Y, Zhou Y, Liu J, Liu Z, et al. Genetic polymorphism of LBX1 is associated with adolescent idiopathic scoliosis in Northern Chinese Han population. Spine (Phila Pa 1976). 2017;42(15):1125–9.

    Article  Google Scholar 

  79. Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;51(6):401–6.

    Article  CAS  PubMed  Google Scholar 

  80. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45(6):676–9.

    Article  CAS  PubMed  Google Scholar 

  81. Liu G, Liu S, Lin M, Li X, Chen W, Zuo Y, et al. Genetic polymorphisms of GPR126 are functionally associated with PUMC classifications of adolescent idiopathic scoliosis in a Northern Han population. J Cell Mol Med. 2018;22(3):1964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Justice CM, Miller NH, Marosy B, Zhang J, Wilson AF. Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine (Phila Pa 1976). 2003;28(6):589–94.

    Article  Google Scholar 

  83. Miller NH, Marosy B, Justice CM, Novak SM, Tang EY, Boyce P, et al. Linkage analysis of genetic loci for kyphoscoliosis on chromosomes 5p13, 13q13.3, and 13q32. Am J Med Genet A. 2006;140(10):1059–68.

    Article  PubMed  Google Scholar 

  84. Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S, et al. Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet. 2002;111(4–5):401–4.

    Article  CAS  PubMed  Google Scholar 

  85. Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, et al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet. 2007;80(5):957–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raggio CL, Giampietro PF, Dobrin S, Zhao C, Dorshorst D, Ghebranious N, et al. A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res. 2009;27(10):1366–72.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Edery P, Margaritte-Jeannin P, Biot B, Labalme A, Bernard JC, Chastang J, et al. New disease gene location and high genetic heterogeneity in idiopathic scoliosis. Eur J Hum Genet. 2011;19(8):865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, et al. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One. 2013;8(9):e72802.

    Article  Google Scholar 

  89. Montanaro L, Parisini P, Greggi T, Di Silvestre M, Campoccia D, Rizzi S, et al. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis. 2006;1:21.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(16):1748–53.

    Article  Google Scholar 

  91. Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976). 2002;27(21):2357–62.

    Article  Google Scholar 

  92. Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res. 2007;462:53–8.

    Article  PubMed  Google Scholar 

  93. Wang H, Wu Z, Zhuang Q, Fei Q, Zhang J, Liu Y, et al. Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976). 2008;33(20):2199–203.

    Article  Google Scholar 

  94. Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT, et al. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet. 2011;20(7):1456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hayes M, Gao X, Yu LX, Paria N, Henkelman RM, Wise CA, et al. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun. 2014;5:4777.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang X, Jia S, Chen Z, Chong YL, Xie H, Feng D, et al. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet. 2018;50(12):1666–73.

    Article  CAS  PubMed  Google Scholar 

  97. Grimes DT, Boswell CW, Morante NF, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352(6291):1341–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Meng Y, Lin T, Liang S, Gao R, Jiang H, Shao W, et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018;36:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu G, Wang L, Wang X, Yan Z, Yang X, Lin M, et al. Whole-genome methylation analysis of phenotype discordant monozygotic twins reveals novel epigenetic perturbation contributing to the pathogenesis of adolescent idiopathic scoliosis. Front Bioeng Biotechnol. 2019;7:364.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu Nan S, Yuzhi W, Yangzhong Z, Jiaqi Z, Zhenlei L, Weisheng L, et al. Genetic Polymorphism of LBX1 Is Associated With Adolescent Idiopathic Scoliosis in Northern Chinese Han Population. Spine. 2017;42(15):1125–9. https://doi.org/10.1097/BRS.0000000000002111.

  101. Liu Sen G, Mao L, Xiaoxin L, Weisheng L, Yuzhi C, Jiaqi Z, et al. Journal of Cellular and Molecular Medicine 2018;22(3):1964–71. https://doi.org/10.1111/jcmm.13486.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, N., Zhang, T.J., Zhao, S., Cheung, K.M.C. (2022). Genetics of the Growing Spine. In: Akbarnia, B.A., Thompson, G.H., Yazici, M., El-Hawary, R. (eds) The Growing Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-84393-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84393-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84392-2

  • Online ISBN: 978-3-030-84393-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics