Skip to main content

Cerebral Palsy

  • Chapter
  • First Online:
The Growing Spine

Abstract

The management of early onset scoliosis (EOS) associated with cerebral palsy (CP) is challenging. Children with CP who develop EOS generally have significant medical comorbidities and functional impairments and, therefore, require coordinated, multidisciplinary care in order to optimize outcome. The treatment for mild-to-moderate, flexible curves is generally supportive with adequate seating support and possibly soft orthosis (thoracolumbosacral orthosis (TLSO)) bracing to facilitate transfers. Strict indications for surgery for EOS in CP are not available in the literature; however, the data suggest that a curve approaching 90°, particularly one that is becoming stiff, should be treated with surgery. The literature also only offers limited recommendations for surgical constructs. Definitive spinal fusion is described in this cohort. Certainly, the concern for thoracic insufficiency syndrome (TIS) exists with definitive spinal fusion, but the impact of definitive fusion on pulmonary function is difficult to assess in this patient population as patients have profound intellectual disability and limited ability to participate in pulmonary function tests. Growth friendly techniques continue to evolve. The vertically expandable prosthetic titanium rib (VEPTR) was thought to be an effective tool in managing these complex conditions but may be falling out of favor due to a high complication profile. Traditional growing rods (TGR) and, more recently, magnetically controlled growing rods (MCGR), and growth guidance implants – such as the Shilla™ and modern Luque trolley – are other constructs available for these patients, but the literature supporting their use is at an early stage. While the burden of surgery on the patient and their family is significant, emerging data suggest that the benefit of surgery on health-related quality of life (HRQoL) appears to justify the treatment of EOS in children with CP, but the choice of surgical approach is less clear. More study is required to delineate the optimal surgical approach in this vulnerable group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howard J, Soo B, Graham HK, Boyd RN, Reid S, Lanigan A, et al. Cerebral palsy in Victoria: motor types, topography and gross motor function. J Paediatr Child Health. 2005;41(9–10):479–83.

    Article  PubMed  Google Scholar 

  2. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.

    Article  CAS  PubMed  Google Scholar 

  3. Wood E, Rosenbaum P. The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev Med Child Neurol. 2000;42(5):292–6.

    Article  CAS  PubMed  Google Scholar 

  4. Persson-Bunke M, Hägglund G, Lauge-Pedersen H, Wagner P, Westbom L. Scoliosis in a total population of children with cerebral palsy. Spine. 2012;37(12):E708–13.

    Article  PubMed  Google Scholar 

  5. Hägglund G, Pettersson K, Czuba T, Persson-Bunke M, Rodby-Bousquet E. Incidence of scoliosis in cerebral palsy. Acta Orthop. 2018;89(4):443–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Majd ME, Muldowny DS, Holt RT. Natural history of scoliosis in the institutionalized adult cerebral palsy population. Spine. 1997;22(13):1461–6.

    Article  CAS  PubMed  Google Scholar 

  7. Howard J, Sees J, Shrader MW. Management of spinal deformity in cerebral palsy. J Pediatr Orthop Soc N Am. 2019;1(1):1–11.

    Article  Google Scholar 

  8. Miyanji F, Nasto LA, Sponseller PD, Shah SA, Samdani AF, Lonner B, et al. Assessing the risk-benefit ratio of scoliosis surgery in cerebral palsy: surgery is worth it. J Bone Joint Surg Am. 2018;100(7):556–63.

    Article  PubMed  Google Scholar 

  9. Howard JJ, Farrelly J. Evidence-based treatment of neuromuscular scoliosis. In: Alshryda S, Huntley J, Banaszkiewicz P, editors. Paediatric orthopaedics: an evidence-based approach to clinical questions. Cham: Springer; 2017. p. 213–28.

    Chapter  Google Scholar 

  10. Buckler N, Sun M, Al Nouri M, Vaughan M, Hilaire T, Matsumoto H, et al. Analysis of health-related quality of life in cerebral palsy patients treated with growth-friendly surgery for early-onset scoliosis. Spine Deform. 2019;7(6):1025–6.

    Article  Google Scholar 

  11. Williams BA, Matsumoto H, McCalla DJ, Akbarnia BA, Blakemore LC, Betz RR, et al. Development and initial validation of the Classification of Early-Onset Scoliosis (C-EOS). J Bone Joint Surg Am. 2014;96(16):1359–67.

    Article  PubMed  Google Scholar 

  12. Mehta MH. Growth as a corrective force in the early treatment of progressive infantile scoliosis. J Bone Joint Surg Br. 2005;87(9):1237–47.

    Article  CAS  PubMed  Google Scholar 

  13. Fletcher ND, McClung A, Rathjen KE, Denning JR, Browne R, Johnston CE. Serial casting as a delay tactic in the treatment of moderate-to-severe early-onset scoliosis. J Pediatr Orthop. 2012;32(7):664–71.

    Article  PubMed  Google Scholar 

  14. Waldron SR, Poe-Kochert C, Son-Hing JP, Thompson GH. Early onset scoliosis: the value of serial risser casts. J Pediatr Orthop. 2013;33(8):775–80.

    Article  PubMed  Google Scholar 

  15. El-Hawary R, Chukwunyerenwa C. Update on evaluation and treatment of scoliosis. Pediatr Clin N Am. 2014;61(6):1223–41.

    Article  Google Scholar 

  16. Miller A, Temple T, Miller F. Impact of orthoses on the rate of scoliosis progression in children with cerebral palsy. J Pediatr Orthop. 1996;16(3):332–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hasler CC. Operative treatment for spinal deformities in cerebral palsy. J Child Orthop. 2013;7(5):419–23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Comstock CP, Leach J, Wenger DR. Scoliosis in total-body-involvement cerebral palsy. Analysis of surgical treatment and patient and caregiver satisfaction. Spine. 1998;23(12):1412–24; discussion 1424–1425

    Article  CAS  PubMed  Google Scholar 

  19. Aleissa S, Parsons D, Grant J, Harder J, Howard J. Deep wound infection following pediatric scoliosis surgery: incidence and analysis of risk factors. Can J Surg J Can Chir. 2011;54(4):263–9.

    Article  Google Scholar 

  20. McElroy MJ, Sponseller PD, Dattilo JR, Thompson GH, Akbarnia BA, Shah SA, et al. Growing rods for the treatment of scoliosis in children with cerebral palsy: a critical assessment. Spine. 2012;37(24):E1504–10.

    Article  PubMed  Google Scholar 

  21. Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110(6):1220–5.

    Article  PubMed  Google Scholar 

  22. Kerr Graham H, Selber P. Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg Br. 2003;85(2):157–66.

    Article  CAS  PubMed  Google Scholar 

  23. Soo B, Howard JJ, Boyd RN, Reid SM, Lanigan A, Wolfe R, et al. Hip displacement in cerebral palsy. J Bone Joint Surg Am. 2006;88(1):121–9.

    PubMed  Google Scholar 

  24. Saito N, Ebara S, Ohotsuka K, Kumeta H, Takaoka K. Natural history of scoliosis in spastic cerebral palsy. Lancet Lond Engl. 1998;351(9117):1687–92.

    Article  CAS  Google Scholar 

  25. Sitoula P, Holmes L, Sees J, Rogers K, Dabney K, Miller F. The long-term outcome of early spine fusion for scoliosis in children with cerebral palsy. Clin Spine Surg. 2016;29(8):E406–12.

    Article  PubMed  Google Scholar 

  26. Vialle R, Thévenin-Lemoine C, Mary P. Neuromuscular scoliosis. Orthop Traumatol Surg Res. 2013;99(1 Suppl):S124–39.

    Article  CAS  PubMed  Google Scholar 

  27. McCarthy RE. Management of neuromuscular scoliosis. Orthop Clin North Am. 1999;30(3):435–49, viii

    Article  CAS  PubMed  Google Scholar 

  28. Dias RC, Miller F, Dabney K, Lipton G, Temple T. Surgical correction of spinal deformity using a unit rod in children with cerebral palsy. J Pediatr Orthop. 1996;16(6):734–40.

    Article  CAS  PubMed  Google Scholar 

  29. Mercado E, Alman B, Wright JG. Does spinal fusion influence quality of life in neuromuscular scoliosis? Spine. 2007;32(19 Suppl):S120–5.

    Article  PubMed  Google Scholar 

  30. Letts M, Shapiro L, Mulder K, Klassen O. The windblown hip syndrome in total body cerebral palsy. J Pediatr Orthop. 1984;4(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  31. Tsirikos AI. Development and treatment of spinal deformity in patients with cerebral palsy. Indian J Orthop. 2010;44(2):148–58.

    Article  PubMed Central  Google Scholar 

  32. Sarwahi V, Sarwark JF, Schafer MF, Backer C, Lee M, King EC, et al. Standards in anterior spine surgery in pediatric patients with neuromuscular scoliosis. J Pediatr Orthop. 2001;21(6):756–60.

    Article  CAS  PubMed  Google Scholar 

  33. Sponseller PD, Jain A, Lenke LG, Shah SA, Sucato DJ, Emans JB, et al. Vertebral column resection in children with neuromuscular spine deformity. Spine. 2012;37(11):E655–61.

    Article  PubMed  Google Scholar 

  34. Larsson E-LC, Aaro SI, Normelli HCM, Oberg BE. Long-term follow-up of functioning after spinal surgery in patients with neuromuscular scoliosis. Spine. 2005;30(19):2145–52.

    Article  PubMed  Google Scholar 

  35. Shrader MW, Wimberly L, Thompson R. Hip surveillance in children with cerebral palsy. J Am Acad Orthop Surg. 2019;27(20):760–8.

    Article  PubMed  Google Scholar 

  36. Hägglund G, Alriksson-Schmidt A, Lauge-Pedersen H, Rodby-Bousquet E, Wagner P, Westbom L. Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Joint J. 2014;96-B(11):1546–52.

    Article  PubMed  Google Scholar 

  37. Shrader MW, Crea B. Scoliosis in children with cerebral palsy. In: Cerebral palsy: a multidisciplinary approach. Cham: Springer; 2018. p. 209–18.

    Chapter  Google Scholar 

  38. Lee KM, Chung CY, Kwon DG, Han HS, Choi IH, Park MS. Reliability of physical examination in the measurement of hip flexion contracture and correlation with gait parameters in cerebral palsy. J Bone Joint Surg Am. 2011;93(2):150–8.

    Article  PubMed  Google Scholar 

  39. Gupta MC, Wijesekera S, Sossan A, Martin L, Vogel LC, Boakes JL, et al. Reliability of radiographic parameters in neuromuscular scoliosis. Spine. 2007;32(6):691–5.

    Article  PubMed  Google Scholar 

  40. Shrader MW, Andrisevic EM, Belthur MV, White GR, Boan C, Wood W. Inter- and intraobserver reliability of pelvic obliquity measurement methods in patients with cerebral palsy. Spine Deform. 2018;6(3):257–62.

    Article  PubMed  Google Scholar 

  41. Osebold WR, Mayfield JK, Winter RB, Moe JH. Surgical treatment of paralytic scoliosis associated with myelomeningocele. J Bone Joint Surg Am. 1982;64(6):841–56.

    Article  CAS  PubMed  Google Scholar 

  42. Archibeck MJ, Smith JT, Carroll KL, Davitt JS, Stevens PM. Surgical release of tethered spinal cord: survivorship analysis and orthopedic outcome. J Pediatr Orthop. 1997;17(6):773–6.

    Article  CAS  PubMed  Google Scholar 

  43. Terjesen T, Lange JE, Steen H. Treatment of scoliosis with spinal bracing in quadriplegic cerebral palsy. Dev Med Child Neurol. 2000;42(7):448–54.

    Article  CAS  PubMed  Google Scholar 

  44. Hughes MS, Swarup I, Makarewich CA, Williams BA, Talwar D, Cahill PJ, et al. Expert consensus for early onset scoliosis surgery. J Pediatr Orthop. 2020;40(7):e621–8.

    Article  PubMed  Google Scholar 

  45. Yaszay B, Sponseller PD, Shah SA, Asghar J, Miyanji F, Samdani AF, et al. Performing a definitive fusion in juvenile CP patients is a good surgical option. J Pediatr Orthop. 2017;37(8):e488–91.

    Article  PubMed  Google Scholar 

  46. Narayanan UG, Fehlings D, Weir S, Knights S, Kiran S, Campbell K. Initial development and validation of the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD). Dev Med Child Neurol. 2006;48(10):804–12.

    Article  PubMed  Google Scholar 

  47. Narayanan UG, Sponseller P, Newton PO, Marks MC. The CPCHILD questionnaire is sensitive to change following scoliosis surgery in children with cerebral palsy: PAPER #62. Spine J Meet Abstr. 2011:86–7.

    Google Scholar 

  48. Campbell RM, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85(3):399–408.

    Article  PubMed  Google Scholar 

  49. Herring MJ, Putney LF, Wyatt G, Finkbeiner WE, Hyde DM. Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol. 2014;307(4):L338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCarthy RE, Luhmann S, Lenke L, McCullough FL. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop. 2014;34(1):1–7.

    Article  PubMed  Google Scholar 

  51. Hell AK, Campbell RM, Hefti F. The vertical expandable prosthetic titanium rib implant for the treatment of thoracic insufficiency syndrome associated with congenital and neuromuscular scoliosis in young children. J Pediatr Orthop B. 2005;14(4):287–93.

    Article  PubMed  Google Scholar 

  52. Abol Oyoun N, Stuecker R. Bilateral rib-to-pelvis Eiffel Tower VEPTR construct for children with neuromuscular scoliosis: a preliminary report. Spine J. 2014;14(7):1183–91.

    Article  PubMed  Google Scholar 

  53. El-Hawary R, Kadhim M, Vitale M, Smith J, Samdani A, Flynn JM, et al. VEPTR implantation to treat children with early-onset scoliosis without rib abnormalities: early results from a prospective multicenter study. J Pediatr Orthop. 2017;37(8):e599–605.

    Article  PubMed  Google Scholar 

  54. Park HY, Matsumoto H, Feinberg N, Roye DP, Kanj WW, Betz RR, et al. The Classification for Early-onset Scoliosis (C-EOS) correlates with the speed of Vertical Expandable Prosthetic Titanium Rib (VEPTR) proximal anchor failure. J Pediatr Orthop. 2017;37(6):381–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramirez N, Olivella G, Rodriguez O, Marrero P, Smith J, Garg S, et al. Incidence of complications in the management of non-ambulatory neuromuscular early-onset scoliosis with a rib-based growing system: high- versus low-tone patients. Eur J Orthop Surg Traumatol. 2020;30(4):621–7.

    Article  PubMed  Google Scholar 

  56. Thakar C, Kieser DC, Mardare M, Haleem S, Fairbank J, Nnadi C. Systematic review of the complications associated with magnetically controlled growing rods for the treatment of early onset scoliosis. Eur Spine J. 2018;27(9):2062–71.

    Article  PubMed  Google Scholar 

  57. Rushton PRP, Smith SL, Kandemir G, Forbes L, Fender D, Bowey AJ, et al. Spinal lengthening with magnetically controlled growing rods: data from the largest series of explanted devices. Spine. 2020;45(3):170–6.

    Article  PubMed  Google Scholar 

  58. Polly DW, Ackerman SJ, Schneider K, Pawelek JB, Akbarnia BA. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective. Clin Outcomes Res CEOR. 2016;8:457–65.

    Google Scholar 

  59. Akbarnia BA, Pawelek JB, Cheung KMC, Demirkiran G, Elsebaie H, Emans JB, et al. Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2-year study. Spine Deform. 2014;2(6):493–7.

    Article  PubMed  Google Scholar 

  60. Bekmez S, Afandiyev A, Dede O, Karaismailoğlu E, Demirkiran HG, Yazici M. Is magnetically controlled growing rod the game changer in early-onset scoliosis? A preliminary report. J Pediatr Orthop. 2019;39(3):e195–200.

    Article  PubMed  Google Scholar 

  61. Sun M, Buckler N, Al Nouri M, Vaughan M, Hilaire T, Sponseller P, et al. Treatment with MCGR results in improved scoliosis correction but no difference in UPROR as compared to traditional growth friendly surgery for children with cerebral palsy. Spine Deform. 2019;7(6):1024–5.

    Article  Google Scholar 

  62. McCarthy RE, McCullough FL. Shilla growth guidance for early-onset scoliosis: results after a minimum of five years of follow-up. J Bone Joint Surg Am. 2015;97(19):1578–84.

    Article  PubMed  Google Scholar 

  63. Luque ER. Treatment of scoliosis without arthrodesis or external support preliminary report. Publ Assoc Bone Joint Surg CORR®. 1976;119:276.

    Google Scholar 

  64. Ouellet J. Surgical technique: modern Luqué trolley, a self-growing rod technique. Clin Orthop. 2011;469(5):1356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Alkhalife YI, Padhye KP, El-Hawary R. New technologies in pediatric spine surgery. Orthop Clin North Am. 2019;50(1):57–76.

    Article  PubMed  Google Scholar 

  66. Lipton GE, Miller F, Dabney KW, Altiok H, Bachrach SJ. Factors predicting postoperative complications following spinal fusions in children with cerebral palsy. J Spinal Disord. 1999;12(3):197–205.

    CAS  PubMed  Google Scholar 

  67. Dabney KW, Miller F, Lipton GE, Letonoff EJ, HC MC. Correction of sagittal plane spinal deformities with unit rod instrumentation in children with cerebral palsy. J Bone Joint Surg Am. 2004;86-A(Suppl 1(Pt 2)):156–68.

    Article  Google Scholar 

  68. Winter SL, Kriel RL, Novacheck TF, Luxenberg MG, Leutgeb VJ, Erickson PA. Perioperative blood loss: the effect of valproate. Pediatr Neurol. 1996;15(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  69. Jain A, Njoku DB, Sponseller PD. Does patient diagnosis predict blood loss during posterior spinal fusion in children? Spine. 2012;37(19):1683–7.

    Article  PubMed  Google Scholar 

  70. Brenn BR, Theroux MC, Dabney KW, Miller F. Clotting parameters and thromboelastography in children with neuromuscular and idiopathic scoliosis undergoing posterior spinal fusion. Spine. 2004;29(15):E310–4.

    Article  PubMed  Google Scholar 

  71. Mangano DT, Tudor IC, Dietzel C, Multicenter Study of Perioperative Ischemia Research Group, Ischemia Research and Education Foundation. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354(4):353–65.

    Article  CAS  PubMed  Google Scholar 

  72. Dhawale AA, Shah SA, Sponseller PD, Bastrom T, Neiss G, Yorgova P, et al. Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine. 2012;37(9):E549–55.

    Article  PubMed  Google Scholar 

  73. Theroux MC, DiCindio S. Major surgical procedures in children with cerebral palsy. Anesthesiol Clin. 2014;32(1):63–81.

    Article  PubMed  Google Scholar 

  74. Yaszay B, Scannell BP, Bomar JD, Sponseller PD, Shah SA, Asghar J, et al. Although inconvenient, baclofen pumps do not complicate scoliosis surgery in patients with cerebral palsy. Spine. 2015;40(8):E504–9.

    Article  PubMed  Google Scholar 

  75. Mackenzie WGS, Matsumoto H, Williams BA, Corona J, Lee C, Cody SR, et al. Surgical site infection following spinal instrumentation for scoliosis: a multicenter analysis of rates, risk factors, and pathogens. J Bone Joint Surg Am. 2013;95(9):800–6, S1–2

    Article  PubMed  Google Scholar 

  76. Ramo BA, Roberts DW, Tuason D, McClung A, Paraison LE, Moore HG, et al. Surgical site infections after posterior spinal fusion for neuromuscular scoliosis: a thirty-year experience at a single institution. J Bone Joint Surg Am. 2014;96(24):2038–48.

    Article  PubMed  Google Scholar 

  77. Sankar WN, Acevedo DC, Skaggs DL. Comparison of complications among growing spinal implants. Spine. 2010;35(23):2091–6.

    Article  PubMed  Google Scholar 

  78. Kabirian N, Akbarnia BA, Pawelek JB, Alam M, Mundis GM, Acacio R, et al. Deep surgical site infection following 2344 growing-rod procedures for early-onset scoliosis: risk factors and clinical consequences. J Bone Joint Surg Am. 2014;96(15):e128.

    Article  PubMed  Google Scholar 

  79. Vitale MG, Riedel MD, Glotzbecker MP, Matsumoto H, Roye DP, Akbarnia BA, et al. Building consensus: development of a Best Practice Guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J Pediatr Orthop. 2013;33(5):471–8.

    Article  PubMed  Google Scholar 

  80. Glotzbecker MP, St Hilaire TA, Pawelek JB, Thompson GH, Vitale MG, Children’s Spine Study Group, et al. Best practice guidelines for surgical site infection prevention with surgical treatment of early onset scoliosis. J Pediatr Orthop. 2019;39(8):e602–7.

    Article  PubMed  Google Scholar 

  81. Shrader MW, Falk MN, Cotugno RS, Jones JS, White GR, Segal LS. Are we undermedicating patients with neuromuscular scoliosis after posterior spinal fusion? Spine Deform. 2014;2(5):399–403.

    Article  PubMed  Google Scholar 

  82. Malviya S, Voepel-Lewis T, Burke C, Merkel S, Tait AR. The revised FLACC observational pain tool: improved reliability and validity for pain assessment in children with cognitive impairment. Paediatr Anaesth. 2006;16(3):258–65.

    Article  PubMed  Google Scholar 

  83. LaMothe JM, Al Sayegh S, Parsons DL, Ferri-de-Barros F. The use of intraoperative traction in pediatric scoliosis surgery: a systematic review. Spine Deform. 2015;3(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  84. Vialle R, Delecourt C, Morin C. Surgical treatment of scoliosis with pelvic obliquity in cerebral palsy: the influence of intraoperative traction. Spine. 2006;31(13):1461–6.

    Article  PubMed  Google Scholar 

  85. Buchowski JM, Bhatnagar R, Skaggs DL, Sponseller PD. Temporary internal distraction as an aid to correction of severe scoliosis. J Bone Joint Surg Am. 2006;88(9):2035–41.

    PubMed  Google Scholar 

  86. Miller F. Spinal deformity secondary to impaired neurologic control. J Bone Joint Surg Am. 2007;89(Suppl 1):143–7.

    PubMed  Google Scholar 

  87. DiCindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, et al. Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine. 2003;28(16):1851–5; discussion 1855–6

    Article  PubMed  Google Scholar 

  88. Hammett TC, Boreham B, Quraishi NA, Mehdian SMH. Intraoperative spinal cord monitoring during the surgical correction of scoliosis due to cerebral palsy and other neuromuscular disorders. Eur Spine J. 2013;22(Suppl 1):38–41.

    Article  PubMed Central  Google Scholar 

  89. Broom MJ, Banta JV, Renshaw TS. Spinal fusion augmented by Luque-rod segmental instrumentation for neuromuscular scoliosis. J Bone Joint Surg Am. 1989;71(1):32–44.

    Article  CAS  PubMed  Google Scholar 

  90. Thometz JG, Simon SR. Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy. J Bone Joint Surg Am. 1988;70(9):1290–6.

    Article  CAS  PubMed  Google Scholar 

  91. Dias RC, Miller F, Dabney K, Lipton GE. Revision spine surgery in children with cerebral palsy. J Spinal Disord. 1997;10(2):132–44.

    Article  CAS  PubMed  Google Scholar 

  92. Sanders JO, Evert M, Stanley EA, Sanders AE. Mechanisms of curve progression following sublaminar (Luque) spinal instrumentation. Spine. 1992;17(7):781–9.

    Article  CAS  PubMed  Google Scholar 

  93. Tsirikos AI, Chang W-N, Shah SA, Dabney KW, Miller F. Preserving ambulatory potential in pediatric patients with cerebral palsy who undergo spinal fusion using unit rod instrumentation. Spine. 2003;28(5):480–3.

    Article  PubMed  Google Scholar 

  94. Tsirikos AI, Lipton G, Chang W-N, Dabney KW, Miller F. Surgical correction of scoliosis in pediatric patients with cerebral palsy using the unit rod instrumentation. Spine. 2008;33(10):1133–40.

    Article  PubMed  Google Scholar 

  95. Nguyen H, Tomita S, Gillingham B. Small bowel perforation from unit rod posterior spinal fusion. J Pediatr Surg. 2005;40(6):e7–8.

    Article  PubMed  Google Scholar 

  96. Tsirikos AI, Mains E. Surgical correction of spinal deformity in patients with cerebral palsy using pedicle screw instrumentation. J Spinal Disord Tech. 2012;25(7):401–8.

    Article  PubMed  Google Scholar 

  97. Funk S, Lovejoy S, Mencio G, Martus J. Rigid instrumentation for neuromuscular scoliosis improves deformity correction without increasing complications. Spine. 2016;41(1):46–52.

    Article  PubMed  Google Scholar 

  98. Mattila M, Jalanko T, Puisto V, Pajulo O, Helenius IJ. Hybrid versus total pedicle screw instrumentation in patients undergoing surgery for neuromuscular scoliosis: a comparative study with matched cohorts. J Bone Joint Surg Br. 2012;94(10):1393–8.

    Article  CAS  PubMed  Google Scholar 

  99. Keeler KA, Lenke LG, Good CR, Bridwell KH, Sides B, Luhmann SJ. Spinal fusion for spastic neuromuscular scoliosis: is anterior releasing necessary when intraoperative halo-femoral traction is used? Spine. 2010;35(10):E427–33.

    Article  PubMed  Google Scholar 

  100. Hod-Feins R, Abu-Kishk I, Eshel G, Barr Y, Anekstein Y, Mirovsky Y. Risk factors affecting the immediate postoperative course in pediatric scoliosis surgery. Spine. 2007;32(21):2355–60.

    Article  PubMed  Google Scholar 

  101. Sponseller PD, Zimmerman RM, Ko PS, Pull Ter Gunne AF, Mohamed AS, Chang T-L, et al. Low profile pelvic fixation with the sacral alar iliac technique in the pediatric population improves results at two-year minimum follow-up. Spine. 2010;35(20):1887–92.

    Article  PubMed  Google Scholar 

  102. Shabtai L, Andras LM, Portman M, Harris LR, Choi PD, Tolo VT, et al. Sacral Alar Iliac (SAI) screws fail 75% less frequently than iliac screws in neuromuscular scoliosis. J Pediatr Orthop. 2017;37(8):e470–5.

    Article  PubMed  Google Scholar 

  103. Abousamra O, Sullivan BT, Samdani AF, Yaszay B, Cahill PJ, Newton PO, et al. Three methods of pelvic fixation for scoliosis in children with cerebral palsy: differences at 5-year follow-up. Spine. 2019;44(1):E19–25.

    Article  PubMed  Google Scholar 

  104. Crawford L, Herrera-Soto J, Ruder JA, Phillips J, Knapp R. The fate of the neuromuscular hip after spinal fusion. J Pediatr Orthop. 2017;37(6):403–8.

    Article  PubMed  Google Scholar 

  105. Matsumoto H, Williams B, Park HY, Yoshimachi JY, Roye BD, Roye DP, et al. The final 24-item Early Onset Scoliosis Questionnaires (EOSQ-24): validity, reliability and responsiveness. J Pediatr Orthop. 2018;38(3):144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tsirikos AI, Chang W-N, Dabney KW, Miller F, Glutting J. Life expectancy in pediatric patients with cerebral palsy and neuromuscular scoliosis who underwent spinal fusion. Dev Med Child Neurol. 2003;45(10):677–82.

    Article  PubMed  Google Scholar 

  107. Hell AK, Braunschweig L, Behrend J, Lorenz HM, Tsaknakis K, von Deimling U, et al. Health-related quality of life in early-onset-scoliosis patients treated with growth-friendly implants is influenced by etiology, complication rate and ambulatory ability. BMC Musculoskelet Disord. 2019;20(1):588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suken A. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nahm, N.J., Howard, J.J., Shah, S.A. (2022). Cerebral Palsy. In: Akbarnia, B.A., Thompson, G.H., Yazici, M., El-Hawary, R. (eds) The Growing Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-84393-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84393-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84392-2

  • Online ISBN: 978-3-030-84393-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics