Skip to main content

Industrial Applications IV

Acoustic Package Optimization Methods in the Aeronautic Industry

  • Chapter
  • First Online:
Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media

Part of the book series: Topics in Applied Physics ((TAP,volume 143))

  • 1915 Accesses

Abstract

This chapter presents an overview of the challenges faced by the aeronautic industry on the search for a more efficient and comfortable cabin. In order to do that, the main noise sources are presented and characterized, together with a typical noise control treatment solution. Later, deeper focus on the porous materials use is described, presenting the difficulties for the characterization of such materials and consequently uncertainties on the project requirement’s definition. Finally, some of the promising new studies on porous materials are discussed and their impact is evaluated in a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Blok, P. Vink, I. Kamp, Comfortabel vliegen: comfort van het vliegtuiginterieur door de ogen van de gebruiker. Tijdschrift voor ergonomie 4(32), 4–11 (2007)

    Google Scholar 

  2. J. Quehl, Comfort Studies on Aircraft Interior Sound and Vibration. Ph.D. thesis, Universität Oldenburg (2001)

    Google Scholar 

  3. J.F. Wilby, Aircraft interior noise. J. Sound Vib. 190(3), 545–564 (1996)

    Article  Google Scholar 

  4. D. Rennison, A.G. Piersol, J.F. Wilby, E.G. Wilby, A review of the acoustic and aerodynamic loads and the vibration response of the space shuttle orbiter vehicle–sts-1 dynamics verification assessment. BBN Report 4438 for NASA, Jet Propulsion Laboratory (1980)

    Google Scholar 

  5. K. V. Horoshenkov, A. Khan, F.-X. Bécot, L. Jaouen, F. Sgard, A. Renault, N. Amirouche, F. Pompoli, N. Prodi, P.E.A. Bonfiglio, Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests). J. Acoust. Soc. Am. 122(1), 345–353 (2007)

    Google Scholar 

  6. ISO 10534-2: Acoustics, Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: transfer-function method (1998)

    Google Scholar 

  7. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  Google Scholar 

  8. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  Google Scholar 

  9. A. C1511, Standard test method for determining the water retention (repellency) characteristics of fibrous glass insulation (aircraft type) (2009)

    Google Scholar 

  10. E.A. Kulakauskas, Fábio Luis Val Quintans, Avaliação do uso de materiais porosos na perda de transmissão de painéis duplos, Universidade Federal de Santa Catarina, MSc Thesis (2016)

    Google Scholar 

  11. P. Mareze, Análise da influência da microgeometria na absorção sonora de materiais porosos de estrutura rígida. Ph.D. thesis, Universidade Federal de Santa Catarina (2013)

    Google Scholar 

  12. T. Weisser, J.-P. Groby, O. Dazel, F. Gaultier, E. Deckers, S. Futatsugi, L. Monteiro, Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach. J. Acoust. Soc. Am. 139(2), 617–629 (2016)

    Article  Google Scholar 

  13. R.A. Prydz, L.S. Wirt, H.L. Kuntz, L.D. Pope, Transmission loss of a multilayer panel with internal tuned helmholtz resonators. J. Acoust. Soc. Am. 87(4), 1597–1602 (1990)

    Article  Google Scholar 

  14. O. Doutres, N. Atalla, H. Osman, Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions. J. Acoust. Soc. Am. 137(6), 3502–3513 (2015)

    Article  Google Scholar 

  15. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Google Scholar 

  16. F. Langfeldt, J. Riecken, W. Gleine, O. Von Estorff, A membrane-type acoustic metamaterial with adjustable acoustic properties. J. Sound Vib. 373, 1–18 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, I., Futatsugi, S., Rodrigues, M.L.V. (2021). Industrial Applications IV. In: Jiménez, N., Umnova, O., Groby, JP. (eds) Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media. Topics in Applied Physics, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-84300-7_12

Download citation

Publish with us

Policies and ethics