Skip to main content

Periodic Structures, Irreducible Brillouin Zone, Dispersion Relations and the Plane Wave Expansion Method

  • Chapter
  • First Online:
Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media

Part of the book series: Topics in Applied Physics ((TAP,volume 143))

Abstract

The Plane Wave Expansion (PWE) method allows the calculation of dispersion curves, i.e., the relation linking the frequency to the wave number for any propagating mode of periodic structures made of elastic materials such as phononic crystals. The method is relatively easy to implement numerically but presents some limitations. After recalling some fundamental aspects of crystallography that are necessary to the study of periodic structures, the PWE method described in detail for the case of bulk phononic crystals, i.e., structures of infinite extent, and its advantages and drawbacks are discussed. It is also shown that the method can be used for calculating the band structure of phononic crystals of finite thickness and for analysing the evanescent waves within the phononic band gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. Strutt (Lord Rayleigh), XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. S. 5. 24(147), 145–159 (1887)

    Google Scholar 

  2. M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band structure. J. Sound Vib. 158(2), 377–382 (1992)

    Article  Google Scholar 

  3. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993)

    Article  CAS  Google Scholar 

  4. P.A. Deymier, Acoustic Metamaterials and Phononic Crystals Springer Series in Solid-State Sciences. (Springer, Berlin, 2013)

    Book  Google Scholar 

  5. C. Kittel, Introduction to Solid State Physics, 8th edn. 1 Wiley Drive Somerset (NJ 08875-1272, USA, Wiley, 2004)

    Google Scholar 

  6. N.W. Ashcroft, N.D. Mermin, Solid State Physics, 8th edn. (Saunders College Publishing, Fort Worth, 1976)

    Google Scholar 

  7. T. Wegener, “Physics in a nutshell.” “http://www.physics-in-a-nutshell.com/article/1”, 2017

  8. D. Royer, E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer, Berlin, 1999)

    Google Scholar 

  9. Y.-Z. Wang, F.-M. Li, W.-H. Huang, Y.-S. Wang, Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. J. Phys.: Condens. Matter 19(49), 496204 (2007)

    Google Scholar 

  10. S.-C.S. Lin, T.J. Huang, Tunable phononic crystals with anisotropic inclusions. Phys. Rev. B 83(17), 174303 (2011)

    Google Scholar 

  11. M. Wilm, S. Ballandras, V. Laude, T. Pastureaud, A full 3D plane-wave-expansion model for 1–3 piezoelectric composite structures. J. Acoust. Soc. Am. 112(3), 943–952 (2002)

    Article  Google Scholar 

  12. O. Boumatar, J.F. Robillard, J.O. Vasseur, A.-C. Hladky-Hennion, P.A. Deymier, P. Pernod, V. Preobrazhensky, Band gap tunability of magneto-elastic phononic crystal. J. Appl. Phys. 111(5), 054901 (2012)

    Google Scholar 

  13. H.S. Sözüer, J.W. Haus, R. Inguva, Photonic bands: convergence problems with the plane-wave method. Phys. Rev. B 45(24), 13962–13972 (1992)

    Article  Google Scholar 

  14. Y. Cao, Z. Hou, Y. Liu, Convergence problem of plane-wave expansion method for phononic crystals. Phys. Lett. A 327(2), 247–253 (2004)

    Article  CAS  Google Scholar 

  15. Y. Tanaka, Y. Tomoyasu, S. Tamura, Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Phys. Rev. B 62(11), 7387–7392 (2000)

    Article  CAS  Google Scholar 

  16. Z. Hou, X. Fu, Y. Liu, Singularity of the Bloch theorem in the fluid/solid phononic crystal. Phys. Rev. B 73(2), 024304 (2006)

    Article  Google Scholar 

  17. J.O. Vasseur, P.A. Deymier, B. Djafari-Rouhani, Y. Pennec, A.-C. Hladky-Hennion, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Phys. Rev. B 77(8), 085415 (2008)

    Google Scholar 

  18. M.S. Kushwaha, B. Djafari-Rouhani, Giant sonic stop bands in two-dimensional periodic system of fluids. J. Appl. Phys. 84(9), 4677–4683 (1998)

    Article  CAS  Google Scholar 

  19. C. Goffaux, F. Maseri, J.O. Vasseur, B. Djafari-Rouhani, P. Lambin, Measurements and calculations of the sound attenuation by a phononic band gap structure suitable for an insulating partition application. Applied Physics Letters 83(2), 281–283 (2003)

    Article  CAS  Google Scholar 

  20. M.P. Peiró-Torres, J. Redondo, J.M. Bravo, J.V.S. Pérez, Open noise barriers based on sonic crystals: advances in noise control in transport infrastructures. Transp. Res. Procedia 18(Supplement C), 392–398 (2016)

    Google Scholar 

  21. J. Vasseur, P.A. Deymier, M. Beaugeois, Y. Pennec, B. Djafari-Rouhani, D. Prevost, Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide. Zeitschrift für Kristallographie 220(9–10), 829–835 (2009)

    Google Scholar 

  22. M. Kushwaha, B. Djafari-Rouhani, L. Dobrzynski, Sound isolation from cubic arrays of air bubbles in water. Phys. Lett. A 248(2), 252–256 (1998)

    Article  CAS  Google Scholar 

  23. C. Croenne, E.D. Manga, B. Morvan, A. Tinel, B. Dubus, J. Vasseur, A.-C. Hladky-Hennion, Negative refraction of longitudinal waves in a two-dimensional solid-solid phononic crystal. Phys. Rev. B 83(5), 054301 (2011)

    Google Scholar 

  24. R.P. Moiseyenko, V. Laude, Material loss influence on the complex band structure and group velocity in phononic crystals. Phys. Rev. B 83(6), 064301 (2011)

    Google Scholar 

  25. B. Manzanares-Martínez, F. Ramos-Mendieta, Surface elastic waves in solid composites of two-dimensional periodicity. Phys. Rev. B 68(13), 134303 (2003)

    Google Scholar 

  26. C. Charles, B. Bonello, F. Ganot, Propagation of guided elastic waves in two-dimensional phononic crystals. Ultrasonics 44(Supplement), e1209–e1213 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank C. Croënne (IEMN, Villeneuve d’Ascq, France) for his help with some numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme O. Vasseur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasseur, J.O. (2021). Periodic Structures, Irreducible Brillouin Zone, Dispersion Relations and the Plane Wave Expansion Method. In: Jiménez, N., Umnova, O., Groby, JP. (eds) Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media. Topics in Applied Physics, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-84300-7_1

Download citation

Publish with us

Policies and ethics