Skip to main content

Multi-input Quadratic Functional Encryption from Pairings

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2021 (CRYPTO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12828))

Included in the following conference series:

Abstract

We construct the first multi-input functional encryption (MIFE) scheme for quadratic functions from pairings. Our construction supports polynomial number of users, where user i, for \(i \in [n]\), encrypts input \(\mathbf{x}_i \in \mathbb {Z}^m\) to obtain ciphertext \(\mathsf {CT}_i\), the key generator provides a key \(\mathsf {SK}_\mathbf{c}\) for vector \(\mathbf{c} \in \mathbb {Z}^{({mn})^2}\) and decryption, given \(\mathsf {CT}_1,\ldots ,\mathsf {CT}_n\) and \(\mathsf {SK}_\mathbf{c}\), recovers \(\langle \mathbf{c}, \mathbf{x} \otimes \mathbf{x} \rangle \) and nothing else. We achieve indistinguishability-based (selective) security against unbounded collusions under the standard bilateral matrix Diffie-Hellman assumption. All previous MIFE schemes either support only inner products (linear functions) or rely on strong cryptographic assumptions such as indistinguishability obfuscation or multi-linear maps.

S. Agrawal—Research supported by the DST “Swarnajayanti” fellowship, an Indo-French CEFIPRA project and the CCD Centre of Excellence. Part of the research corresponding to this work was conducted while visiting the Simons Institute for the Theory of Computing.

R. Goyal—Research supported in part by NSF CNS Award #1718161, an IBM-MIT grant, and by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR00112020023. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA. Work done in part while at the Simons Institute for the Theory of Computing, supported by Simons-Berkeley research fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that FE for quadratic functions are trivially constructible from FE for inner products (IPFE) by linearizing and encrypting all quadratic monomials. However, FE for quadratic functions requires that the ciphertext size be linear in input length.

  2. 2.

    In an exciting recent work, iO has been constructed from sub-exponential hardness of four well-founded assumptions [24]. However, this construction relies on a series of intricate, lossy reductions and is primarily a feasibility result. We will focus on the polynomial hardness of a well-founded problem in this work.

  3. 3.

    Recall that public-key MIFE does not imply secret-key MIFE. Roughly speaking, a user who has \(\mathsf {CT}_{1}\) for \(x_{1}\) and \(\mathsf {SK}\) for f of a public-key scheme is allowed to learn \(f(x_{1},x_{2} , \ldots ,x_{n})\) for all \((x_{2} , \ldots ,x_{n})\), since this is inherent leakage, while it is not the case in secret-key MIFE.

  4. 4.

    In more detail, this follows since the scheme remains correct and secure even if input vectors for \(\mathsf {Enc}\) and \(\mathsf {KeyGen}\) consist of group elements, and \(\mathsf {Dec}\) first obtains decryption values on the exponent of a target-group generator and then computes its discrete log.

References

  1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_19

    Chapter  Google Scholar 

  2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_5

    Chapter  Google Scholar 

  3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_20

    Chapter  Google Scholar 

  5. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. Cryptology ePrint Archive, Report 2020/577 (2020). https://eprint.iacr.org/2020/577

  6. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_21

    Chapter  Google Scholar 

  7. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10

    Chapter  Google Scholar 

  8. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15

    Chapter  Google Scholar 

  9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

    Chapter  Google Scholar 

  10. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_20

    Chapter  Google Scholar 

  11. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer Society Press, October 2015

    Google Scholar 

  12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  13. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_12

    Chapter  Google Scholar 

  14. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16

    Chapter  Google Scholar 

  15. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24

    Chapter  Google Scholar 

  16. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  17. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption from the k-linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_9

    Chapter  Google Scholar 

  18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

    Article  MathSciNet  Google Scholar 

  19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

    Google Scholar 

  20. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_18

    Chapter  Google Scholar 

  21. Gay, R.: A new paradigm for public-key functional encryption for degree-2 polynomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 95–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_4

    Chapter  Google Scholar 

  22. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  23. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A.D. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_14

    Chapter  Google Scholar 

  24. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.iacr.org/2020/1003

  25. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9

    Chapter  Google Scholar 

  26. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_29

    Chapter  Google Scholar 

  27. Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_18

    Chapter  MATH  Google Scholar 

  28. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

    Chapter  Google Scholar 

  29. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

  30. Tomida, J.: Tightly secure inner product functional encryption: multi-input and function-hiding constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 459–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_16

    Chapter  Google Scholar 

  31. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_24

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, S., Goyal, R., Tomida, J. (2021). Multi-input Quadratic Functional Encryption from Pairings. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science(), vol 12828. Springer, Cham. https://doi.org/10.1007/978-3-030-84259-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84259-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84258-1

  • Online ISBN: 978-3-030-84259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics