Skip to main content

Fine-Grained Secure Attribute-Based Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2021 (CRYPTO 2021)

Abstract

Fine-grained cryptography is constructing cryptosystems in a setting where an adversary’s resource is a-prior bounded and an honest party has less resource than an adversary. Currently, only simple form of encryption schemes, such as secret-key and public-key encryption, are constructed in this setting.

In this paper, we enrich the available tools in fine-grained cryptography by proposing the first fine-grained secure attribute-based encryption (ABE) scheme. Our construction is adaptively secure under the widely accepted worst-case assumption, \(\mathsf {NC^1}\subsetneq \mathsf{\oplus L/poly}\), and it is presented in a generic manner using the notion of predicate encodings (Wee, TCC’14). By properly instantiating the underlying encoding, we can obtain different types of ABE schemes, including identity-based encryption. Previously, all of these schemes were unknown in fine-grained cryptography. Our main technical contribution is constructing ABE schemes without using pairing or the Diffie-Hellman assumption. Hence, our results show that, even if one-way functions do not exist, we still have ABE schemes with meaningful security. For more application of our techniques, we construct an efficient (quasi-adaptive) non-interactive zero-knowledge (QA-NIZK) proof system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IBKEM can be straightforwardly extended to one with large key space as we will discuss later in this section.

References

  1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^0\). In: 45th FOCS, pp. 166–175. IEEE Computer Society Press, October 2004

    Google Scholar 

  2. Ball, M., Dachman-Soled, D., Kulkarni, M.: New techniques for zero-knowledge: leveraging inefficient provers to reduce assumptions, interaction, and trust. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 674–703. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_24

    Chapter  Google Scholar 

  3. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in \(\text{NC}^1\). In: 18th ACM STOC, pp. 1–5. ACM Press, May 1986

    Google Scholar 

  4. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_19

    Chapter  Google Scholar 

  5. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23

    Chapter  Google Scholar 

  6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  7. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th FOCS, pp. 283–292. IEEE Computer Society Press, October 2008

    Google Scholar 

  8. Brzuska, C., Couteau, G.: Towards fine-grained one-way functions from strong average-case hardness. IACR Cryptol. ePrint Arch. 2020, 1326 (2020)

    Google Scholar 

  9. Campanelli, M., Gennaro, R.: Fine-grained secure computation. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 66–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_3

    Chapter  Google Scholar 

  10. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  11. Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

    Chapter  Google Scholar 

  12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  13. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 533–562. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_19

    Chapter  Google Scholar 

  14. Egashira, S., Wang, Y., Tanaka, K.: Fine-grained cryptography revisited. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 637–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_22

    Chapter  Google Scholar 

  15. Egashira, S., Wang, Y., Tanaka, K.: Fine-grained cryptography revisited. J. Cryptol. 34(3), 23 (2021)

    Article  MathSciNet  Google Scholar 

  16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  17. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  18. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_34

    Chapter  Google Scholar 

  19. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006, available as Cryptology ePrint Archive Report 2006/309

    Google Scholar 

  20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  21. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_31

    Chapter  Google Scholar 

  22. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304. IEEE Computer Society Press, November 2000

    Google Scholar 

  23. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

    Chapter  Google Scholar 

  24. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  25. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1

    Chapter  MATH  Google Scholar 

  26. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM 21(4), 294–299 (1978)

    Article  Google Scholar 

  27. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Math. Acad. Sci. USSR 41(4) (1987)

    Google Scholar 

  28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  29. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  30. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: Aho, A. (ed.) 19th ACM STOC, pp. 77–82. ACM Press, May 1987

    Google Scholar 

  31. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  32. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments on a previous version of this paper. Parts of Yuyu Wang’s work were supported by the National Natural Science Foundation for Young Scientists of China under Grant Number 62002049, the Fundamental Research Funds for the Central Universities under Grant Number ZYGX2020J017, and the Sichuan Science and Technology Program under Grant Numbers 2019YFG0506 and 2020YFG0292. Parts of Yu Chen’s work were supported by the National Natural Science Foundation of China under Grant Numbers 61772522 and 61932019. Parts of Jiaxin Pan’s work were supported by the Research Council of Norway under Project No. 324235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Pan, J., Chen, Y. (2021). Fine-Grained Secure Attribute-Based Encryption. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science(), vol 12828. Springer, Cham. https://doi.org/10.1007/978-3-030-84259-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84259-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84258-1

  • Online ISBN: 978-3-030-84259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics