Skip to main content

Metal Transport and Its Impact on Coastal Ecosystem

  • Chapter
  • First Online:
Coastal Ecosystems

Part of the book series: Coastal Research Library ((COASTALRL,volume 38))

Abstract

Heavy metal pollution has risen as an alarming threat in the aquatic systems, including coastal ecosystems comprising of mangroves, salt marshes, wetlands, bays, and estuaries. Heavy metals that pollute the coastal ecosystems mainly consist of metals like arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), copper (Cu), nickel (Ni), and manganese (Mn). The transport of heavy metals in coastal ecosystems occurs through various natural as well as anthropogenic sources. The natural sources comprise natural leaching of bedrocks, transportation from land, and input from freshwater systems, while the anthropogenic sources include mining, smelting, and industrial effluent, followed by agricultural and domestic runoff. Rapid economic growth has further accelerated the transport of heavy metals in coastal ecosystems. The pollution caused by heavy metals not only is restricted to the water but also affects the sediments and biological systems. The heavy metals are not degraded naturally as organic matter and are frequently returned to the system through physicochemical and biological processes, posing risk to the health of humans and the ecosystem. The heavy metals have a strong affinity for particle surfaces; hence the majority is deposited in the sediments because of processes like adsorption and coprecipitation. The mobility, speciation, and bioavailability of these heavy metals are dependent on physical and chemical properties such as pH, redox potential, organic content, and salinity, rendering them as potential pollutants. The slack water conditions in coastal areas encourage heavy metal accumulation; high levels of organic, clay, and sulfide content enhance the adsorption of these metals, while the high rate of sedimentation enhances permanent deposition of locally formed metal sulfides and refractory metal-organic complexes. Such transformations pose a great threat as due to bioavailability they enter the food chain and biological systems causing adverse effects on biological and ecosystem health. Several research works present the health impacts and ecological effects caused due to the contamination of heavy metals by assessment of enrichment factor, ecological risk index, geo-accumulation index, and pollution load index. However, owing to deteriorating water quality, more extensive studies are required. Therefore, it is extremely important to look into the sources, processes, fate, and consequences of the heavy metals in coastal ecosystems, and design appropriate management policies to save the ecosystem from being further polluted through the contamination of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhady AA, Khalil MM, Ismail E, Mohamed RS, Ali A, Snousy MG et al (2019) Potential biodiversity threats associated with the metal pollution in the Nile–Delta ecosystem (Manzala lagoon, Egypt). Ecol Indic 98:844–853

    CAS  Google Scholar 

  • Abdel-Hamid AM, Emara HM, Pekhet MA (2011) An attempt for reducing lead content in Tilapia and Mugil during preparing and cooking of fish. J Food Dairy Sci 2(8):513–541

    Google Scholar 

  • Abohassan RA (2013) Heavy metal pollution in Avicennia marina mangrove systems on the Red Sea Coast of Saudi Arabia. J King Abdulaziz Univ Meteorol Environ Arid Land Agric Sci 24(1):35–53

    Google Scholar 

  • Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ Pollut 155(2):320–326. https://doi.org/10.1016/j.envpol.2007.11.011

    Article  CAS  Google Scholar 

  • Ali AAM, Hamed MA, Abd El-Azim H (2011) Heavy metals distribution in the coral reef ecosystems of the northern Red Sea. Helgol Mar Res 65:67–80. https://doi.org/10.1007/s10152-010-0202-7

    Article  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:14

    Google Scholar 

  • Alve E (1991) Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sorfjord, western Norway. J Foraminiferal Res 21(1):1–19

    Google Scholar 

  • Alzahrani DA, Selim EMM, El-Sherbiny MM (2018) Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia. Oceanologia 60(4):513–526. https://doi.org/10.1016/j.oceano.2018.04.002

    Article  Google Scholar 

  • Analuddin K, Sharma S, Jamili SA, Sahidin I, Rianse U, Nadaoka K (2017) Heavy metal bioaccumulation in mangrove ecosystem at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. Mar Pollut Bull 125(1–2):472–480. https://doi.org/10.1016/j.marpolbul.2017.07.065

    Article  CAS  Google Scholar 

  • Ananthan G, Ganesan M, Sampathkumar P, Matheven Pillai M, Kannan L (1992) Distribution of trace metals in water, sediment and plankton of the Vellar estuary. Seaweed Res Util 15(1&2):69–75

    Google Scholar 

  • Arakel AV, Hongjun T (1992) Heavy metal geochemistry and dispersion pattern in coastal sediments, soil, and water of Kedron Brook floodplain area, Brisbane, Australia. Environ Geol Water Sci 20(3):219–231. https://doi.org/10.1007/BF01706165

    Article  CAS  Google Scholar 

  • Arfaeinia H, Dobaradaran S, Moradi M, Pasalari H, Mehrizi EA, Taghizadeh F, Esmaili A, Ansarizadeh M (2019) The effect of land use configurations on concentration, spatial distribution, and ecological risk of heavy metals in coastal sediments of northern part along the Persian Gulf. Sci Total Environ 653:783–791. https://doi.org/10.1016/j.scitotenv.2018.11.009

    Article  CAS  Google Scholar 

  • Audry S, Schäfer J, Blanc G, Jouanneau JM (2004) Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ Pollut 132(3):413–426

    CAS  Google Scholar 

  • Badr NBE, El-Fiky AA, Mostafa AR, Al-Mur BA (2009) Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ Monit Assess 155(1–4):509–526. https://doi.org/10.1007/s10661-008-0452-x

    Article  CAS  Google Scholar 

  • Bai J, Zhao Q, Wang W, Wang X, Jia J, Cui B, Liu X (2019) Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: depth distributions, sources and toxic risks. Ecol Indic 96:91–98. https://doi.org/10.1016/j.ecolind.2018.08.026

    Article  CAS  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Google Scholar 

  • Bastami KD, Neyestani MR, Shemirani F, Soltani F, Haghparast S, Akbari A (2015) Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Mar Pollut Bull 92(1–2):237–243. https://doi.org/10.1016/j.marpolbul.2014.12.035

    Article  CAS  Google Scholar 

  • Batista D, Muricy G, Rocha RC, Miekeley NF (2014) Marine sponges with contrasting life histories can be complementary biomonitors of heavy metal pollution in coastal ecosystems. Environ Sci Pollut Res 21(9):5785–5794. https://doi.org/10.1007/s11356-014-2530-7

    Article  CAS  Google Scholar 

  • Bayen S (2012) Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environ Int 48:84–101

    CAS  Google Scholar 

  • Bergin F, Kucuksezgin F, Uluturhan E, Barut IF, Meric E, Avsar NİYAZİ, Nazik ATİKE (2006) The response of benthic foraminifera and ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea). Estuar Coast Shelf Sci 66(3–4):368–386

    CAS  Google Scholar 

  • Bejaoui S, Michán C, Telahigue K, Nechi S, El Cafsi M, Soudani N, Alhama J (2020) Metal body burden and tissue oxidative status in the bivalve Venerupis decussata from Tunisian coastal lagoons. Mar Environ Res 159, 105000

    Google Scholar 

  • Braatz S, Fortuna S, Broadhead J, Leslie R (2007) Coastal protection in the aftermath of the Indian Ocean tsunami: What role for forests and trees?. RAP Publication (FAO).

    Google Scholar 

  • Borrell A, Tornero V, Bhattacharjee D, Aguilar A (2016) Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci Total Environ 545–546:414–423. https://doi.org/10.1016/j.scitotenv.2015.12.046

    Article  CAS  Google Scholar 

  • Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric 96:32–48

    CAS  Google Scholar 

  • Carmen B, Krause-Jensen D, Alcoverro T, Marbà N, Duarte CM, Van Katwijk MM, Santos R (2019) Recent trend reversal for declining European seagrass meadows. Nat Commun 10(1):1–8

    Google Scholar 

  • Callender E (2003) Heavy Metals in the Environment—Historical Trends. Editor(s): Heinrich D. Holland, Karl K. Turekian. Treatise on Geochemistry. Pergamon (9):67–105. https://doi.org/10.1016/B0-08-043751-6/09161-1

  • Chakraborty P, Babu PR, Acharyya T, Bandyopadhyay D (2010) Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC. Chemosphere 80(5):548–553

    CAS  Google Scholar 

  • Chakraborty S, Bhattacharya T, Singh G, Maity JP (2014) Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf 100(1):61–68. https://doi.org/10.1016/j.ecoenv.2013.12.003

    Article  CAS  Google Scholar 

  • Chan CY, Wang WX (2019) Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environ Pollut 251:264–276

    CAS  Google Scholar 

  • Chouhan B, Meena P, Poonar N (2016) Effect of heavy metal ions in water on human health. Int J Sci Eng Res 4(12):2015–2017

    Google Scholar 

  • Cochard R, Ranamukhaarachchi SL, Shivakoti GP, Shipin OV, Edwards PJ, Seeland KT (2008) The 2004 tsunami in Aceh and southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspect Plant Ecol Evol Syst 10(1):3–40. https://doi.org/10.1016/j.ppees.2007.11.001

    Article  Google Scholar 

  • de Souza Machado AA, Spencer KL, Zarfl C, O’Shea FT (2018) Unravelling metal mobility under complex contaminant signatures. Sci Total Environ 622–623:373–384. https://doi.org/10.1016/j.scitotenv.2017.11.239

    Article  CAS  Google Scholar 

  • Ding X, Ye S, Yuan H, Krauss KW (2018) Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China. Mar Pollut Bull 131:655–661. https://doi.org/10.1016/j.marpolbul.2018.04.060

    Article  CAS  Google Scholar 

  • Du Laing G, Van De Moortel A, Lesage E, Tack FMG, Verloo MG (2008) Factors affecting metal accumulation, mobility and availability in intertidal wetlands of the scheldt estuary (Belgium). In: Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Dordrecht, pp 121–133

    Google Scholar 

  • Dudani SN, Lakhmapurkar J, Gavali D, Patel T (2017) Heavy metal accumulation in the mangrove ecosystem of South Gujarat Coast, India. Turk J Fish Aquat Sci 17:755–766

    Google Scholar 

  • Duruibe JO, Ogwuegbu MO, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    CAS  Google Scholar 

  • Ergin M, Saydam C, Baştürk Ö, Erdem E, Yörük R (1991) Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and İzmit Bay) of the northeastern Sea of Marmara. Chem Geol 91(3):269–285. https://doi.org/10.1016/0009-2541(91)90004-B

    Article  CAS  Google Scholar 

  • Estoque RC, Myint SW, Wang C, Ishtiaque A, Aung TT, Emerton L, Ooba M, Hijioka Y, Mon MS, Wang Z, Fan C (2018) Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob Chang Biol 24(11):5391–5410. https://doi.org/10.1111/gcb.14409

    Article  Google Scholar 

  • El-Serehy HA, Aboulela H, Al-Misned F, Kaiser M, Al-Rasheid K, El-Din HE (2012) Heavy metals contamination of a Mediterranean coastal ecosystem, Eastern Nile Delta, Egypt. Turk J Fish Aquat Sci 12(4)

    Google Scholar 

  • Feldmann H (2009) Geography and labor market performance. Eastern Econ J 35:190–208

    Google Scholar 

  • Fernandes HM, Bidone ED, Veiga LHS, Patchineelam SR (1994) Heavy-metal pollution assessment in the coastal lagoons of Jacarepaguá, Rio de Janeiro, Brazil. Environ Pollut 85(3):259–264

    CAS  Google Scholar 

  • Fernandes LL, Kessarkar PM, Rao VP, Suja S, Parthiban G, Kurian S (2019) Seasonal distribution of trace metals in suspended particulate and bottom sediments of four microtidal river estuaries, west coast of India. Hydrol Sci J 64(12):1519–1534. https://doi.org/10.1080/02626667.2019.1655147

    Article  CAS  Google Scholar 

  • Fernandes MC, Nayak GN (2020) Depositional environment and metal distribution in mangrove sediments within middle region of tropical estuaries, Karnataka, west coast of India. Reg Stud Mar Sci 39: 101473

    Google Scholar 

  • Ferner DJ (2001) Toxicity of heavy metals. eMed J 2:1

    Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  CAS  Google Scholar 

  • Frontalini F, Coccioni R, Bucci C (2010) Benthic foraminiferal assemblages and trace element contents from the lagoons of Orbetello and Lesina. Environ Monit Assess 170:245–260. https://doi.org/10.1007/s10661-009-1229-6

    Article  CAS  Google Scholar 

  • Gallup JL, Sachs JD, Mellinger AD (1999) Geography and economic development. In: International regional science review. SAGE, London, pp 179–232

    Google Scholar 

  • Granek EF, Polasky S, Kappel CV, Reed DJ, Stoms DM, Koch EW, Kennedy CJ, Cramer LA, Hacker SD, Barbier EB, Aswani S, Ruckelshaus M, Perillo GME, Silliman BR, Muthiga N, Bael D, Wolanski E (2010) Ecosystem services as a common language for coastal ecosystem-based management. Conserv Biol 24(1):207–216. https://doi.org/10.1111/j.1523-1739.2009.01355.x

    Article  Google Scholar 

  • Gu YG, Lin Q, Yu ZL, Wang XN, Ke CL, Ning JJ (2015) Speciation and risk of heavy metals in sediments and human health implications of heavy metals in edible nekton in Beibu Gulf, China: a case study of Qinzhou Bay. Mar Pollut Bull 101(2):852–859

    CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2010) Heavy metal concentrations in plants and different harvestable parts: a soil–plant equilibrium model. Environ Pollut 158(8):2659–2663

    CAS  Google Scholar 

  • Guzmán HM, Jiménez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar Pollut Bull 24(11):554–561

    Google Scholar 

  • Hawkes SJ (1997) What is a “heavy metal”? J Chem Educ 74(11):1374. https://doi.org/10.1021/ed074p1374

    Article  CAS  Google Scholar 

  • He Q, Bertness MD, Bruno JF, Li B, Chen G, Coverdale TC, Altieri AH, Bai J, Sun T, Pennings SC, Liu J, Ehrlich PR, Cui B (2014) Economic development and coastal ecosystem change in China. Sci Rep 4. https://doi.org/10.1038/srep05995

  • Hsiang Tan W, Tair R, Aishah S, Ali M, Talibe A, Sualin F, Payus C (2016) Distribution of heavy metals in seawater and surface sediment in coastal area of Tuaran, Sabah

    Google Scholar 

  • Hwang F, Xu Y, Tan Z, Wu Z, Xu H, Shen L, Hu Z (2018) Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen, China. Environ Sci Pollut Res 25(4):3647–3656

    Google Scholar 

  • Islam MM, Sunny AR, Hossain MM, Friess DA (2018) Drivers of mangrove ecosystem service change in the Sundarbans of Bangladesh. Singap J Trop Geogr 39(2):244–265. https://doi.org/10.1111/sjtg.12241

    Article  Google Scholar 

  • Izah SC, Chakrabarty N, Srivastav AL (2016) A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures. Expo Health 8:285–304

    CAS  Google Scholar 

  • Jahan S, Strezov V (2019) Assessment of trace elements pollution in the sea ports of New South Wales (NSW), Australia using oysters as bioindicators. Sci Rep 9(1):1416. https://doi.org/10.1038/s41598-018-38196-w

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Google Scholar 

  • Jokinen SA, Jilbert T, Tiihonen-Filppula R, Koho K (2020) Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Sci Tot Environ 717: 137047

    Google Scholar 

  • Kantor D (2006) Guillain–Barre syndrome: the medical encyclopedia.Bethesda, MD: National Library of Medicine and National Institute of Health. http://www.nlm.nih.gov/medlineplus/

  • Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Pollut 9:1–20

    Google Scholar 

  • Khan AF, Srinivasamoorthy K, Rabina C (2020) Hydrochemical characteristics and quality assessment of groundwater along the coastal tracts of Tamil Nadu and Puducherry, India. Appl Water Sci 10(2):1–21

    Google Scholar 

  • Karthikeyan P, Marigoudar SR, Mohan D, Nagarjuna A, Sharma KV (2020) Ecological risk from heavy metals in Ennore estuary, south east coast of India. Environ Chem Ecotoxicol 2:182–193

    Google Scholar 

  • Khattak MI, Khattak MI, Mohibullah M (2012) Study of heavy metal pollution in mangrove sediments reference to marine environment along the coastal areas of Pakistan. Pak J Bot 44(1):373–378

    CAS  Google Scholar 

  • Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GME, Hacker SD, Granek EF, Primavera JH, Muthiga N, Polasky S, Halpern BS, Kennedy CJ, Kappel CV, Wolanski E (2009) Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front Ecol Environ 7:29–37

    Google Scholar 

  • Kulkarni R, Deobagkar D, Zinjarde S (2018) Metals in mangrove ecosystems and associated biota: a global perspective. Ecotoxicol Environ Saf 153:215–228

    CAS  Google Scholar 

  • Kumar SB, Padhi RK, Mohanty AK, Satpathy KK (2017) Elemental distribution and trace metal contamination in the surface sediment of south east coast of India. Mar Pollut Bull 114(2):1164–1170. https://doi.org/10.1016/j.marpolbul.2016.10.038

    Article  CAS  Google Scholar 

  • Lau WWY (2013) Beyond carbon: conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean Coast Manag 83:5–14. https://doi.org/10.1016/j.ocecoaman.2012.03.011

    Article  Google Scholar 

  • Lau SSS, Chu LM (2000) The significance of sediment contamination in a coastal wetland, Hong Kong, China. Water Res 34(2):379–386. https://doi.org/10.1016/S0043-1354(99)00145-1

    Article  CAS  Google Scholar 

  • Lau JD, Hicks CC, Gurney GG, Cinner JE (2019) What matters to whom and why? Understanding the importance of coastal ecosystem services in developing coastal communities. Ecosyst Serv 35:219–230. https://doi.org/10.1016/j.ecoser.2018.12.012

    Article  Google Scholar 

  • Lee G, Suonan Z, Kim SH, Hwang DW, Lee KS (2019) Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in the polluted bay systems. Mar Pollut Bull 149, 110509

    Google Scholar 

  • Leruste A, Malet N, Munaron D, Derolez V, Hatey E, Collos Y, De Wit R, Bec B (2016) First steps of ecological restoration in Mediterranean lagoons: shifts in phytoplankton communities. Estuar Coast Shelf Sci 180:190–203. https://doi.org/10.1016/j.ecss.2016.06.029

    Article  CAS  Google Scholar 

  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam Int J 28(4):380–394

    Google Scholar 

  • Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, Southeast Queensland, Australia. Environ Int 29:935–948

    Google Scholar 

  • Liquete C, Piroddi C, Drakou EG, Gurney L, Katsanevakis S, Charef A, Egoh B (2013) Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS One 8(7). https://doi.org/10.1371/journal.pone.0067737

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    CAS  Google Scholar 

  • Lin H, Sun T, Adams MP, Zhou Y, Zhang X, Xu S, Gu R (2018) Seasonal dynamics of trace elements in sediment and seagrass tissues in the largest Zostera japonica habitat, the Yellow River Estuary, northern China. Mar Pollut Bull 134:5–13

    Google Scholar 

  • Liu JJ, Diao ZH, Xu XR, Xie Q (2019) Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Sci Total Environ 666:894–901. https://doi.org/10.1016/j.scitotenv.2019.02.288

    Article  CAS  Google Scholar 

  • Lottermoser BG (1998) Heavy metal pollution of coastal river sediments, north-eastern New South Wales, Australia: lead isotope and chemical evidence. Environ Geol 36(1–2):118–126. https://doi.org/10.1007/s002540050327

    Article  CAS  Google Scholar 

  • Lu Y, Yuan J, Lu X, Su C, Zhang Y, Wang C et al (2018) Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ Pollut 239:670–680

    CAS  Google Scholar 

  • Maanan M (2008) Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ Pollut 153(1):176–183. https://doi.org/10.1016/j.envpol.2007.07.024

    Article  CAS  Google Scholar 

  • Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48:616–626. https://doi.org/10.1016/j.ecolind.2014.09.034

    Article  CAS  Google Scholar 

  • Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res GRANTHAALAYAH 3(9SE):1–7

    Google Scholar 

  • Marchand C, Fernandez JM, Moreton B (2016) Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia). Sci Total Environ 562:216–227. https://doi.org/10.1016/j.scitotenv.2016.03.206

    Article  CAS  Google Scholar 

  • Marinho CH, Giarratano E, Domini CE, Garrido M, Gil MN (2019) Potential mobility assessment of metals in salt marsh sediments from San Antonio Bay. Environ Monit Assess 191(12). https://doi.org/10.1007/s10661-019-7895-0

  • Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15:1–6

    Google Scholar 

  • Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63(2–3):254–272. https://doi.org/10.1016/j.ecolecon.2006.10.022

    Article  Google Scholar 

  • Martínez-Sánchez MJ, Navarro MC, Pérez-Sirvent C, Marimón J, Vidal J, García-Lorenzo ML, Bech J (2008) Assessment of the mobility of metals in a mining-impacted coastal area (Spain, Western Mediterranean). J Geochem Explor 96(2–3):171–182. https://doi.org/10.1016/j.gexplo.2007.04.006

    Article  CAS  Google Scholar 

  • Mehvar S, Filatova T, Dastgheib A, de Ruyter van Steveninck E, Ranasinghe R (2018) Quantifying economic value of coastal ecosystem services: a review. J Mar Sci Eng 6:5

    Google Scholar 

  • Milcu AI, Hanspach J, Abson D, Fischer J (2013) Cultural ecosystem services: a literature review and prospects for future research. Ecol Soc 18(3). https://doi.org/10.5751/ES-05790-180344

  • Mishra AK, Santos R, Hall-Spencer JM (2020) Elevated trace elements in sediments and seagrasses at CO2 seeps. Mar Environ Res 153:104810

    CAS  Google Scholar 

  • Mohammadi NS (2019) Molecular and physiological investigation of trace metal stress in seagrass, Zostera muelleri

    Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55(3):431–442. https://doi.org/10.1016/j.chemosphere.2003.10.047

    Article  CAS  Google Scholar 

  • Nazneen S, Singh S, Raju NJ (2019) Heavy metal fractionation in core sediments and potential biological risk assessment from Chilika lagoon, Odisha state, India. Quat Int 507:370–388

    Google Scholar 

  • Neto JAB, Gingele FX, Leipe T, Brehme I (2006) Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environ Geol 49(7):1051–1063. https://doi.org/10.1007/s00254-005-0149-1

    Article  CAS  Google Scholar 

  • Newton A, Brito AC, Icely JD, Derolez V, Clara I, Angus S, Schernewski G, Inácio M, Lillebø AI, Sousa AI, Béjaoui B, Solidoro C, Tosic M, Cañedo-Argüelles M, Yamamuro M, Reizopoulou S, Tseng HC, Canu D, Roselli L, Maanan M, Cristina S, Ruiz-Fernández AC, Lima RFD, Kjerfve B, Rubio-Cisneros N, Pérez-Ruzafa A, Marcos C, Pastres R, Pranovi F, Snoussi M, Turpie J, Tuchkovenko Y, Dyack B, Brookes J, Povilanskas R, Khokhlov V (2018) Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J Nat Conserv 44:50–65

    Google Scholar 

  • Ngoile MAK, Horrill CJ (1993) Coastal ecosystems, productivity and ecosystem protection: coastal ecosystem management. Ambio 22(7):461–467. https://doi.org/10.2307/4314127

    Article  Google Scholar 

  • Nikolenko Y, Fedonenko E (2020) Analysis of the content of heavy metals in phytoplankton of the Zaporizhia reservoir. Sci J 3(24):12–17. https://doi.org/10.15587/2519-8025.2020.210095

    Article  Google Scholar 

  • Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87(2):253–264. https://doi.org/10.1016/j.ecss.2009.12.019

    Article  CAS  Google Scholar 

  • Nobre AM (2009) An ecological and economic assessment methodology for coastal ecosystem management. Environ Manag 44(1):185–204. https://doi.org/10.1007/s00267-009-9291-y

    Article  Google Scholar 

  • Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils—why bother with speciation? Aust J Chem 56:77–91

    CAS  Google Scholar 

  • Oelsner GP, Stets EG (2019) Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: insights and global context. Sci Total Environ 654:1225–1240. https://doi.org/10.1016/j.scitotenv.2018.10.437

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Google Scholar 

  • Pandey G, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci 2(2):17–23

    Google Scholar 

  • Papathanasiou V, Orfanidis S, Brown MT (2015) Intra-specific responses of Cymodocea nodosa to macro-nutrient, irradiance and copper exposure. J Exp Mar Biol Ecol 469:113–122

    CAS  Google Scholar 

  • Pascaud G, Leveque T, Soubrand M, Boussen S, Joussein E, Dumat C (2014) Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environ Sci Pollut Res 21(6):4254–4264. https://doi.org/10.1007/s11356-013-2297-2

    Article  CAS  Google Scholar 

  • Pekey H (2006) Heavy metal pollution assessment in sediments of the Izmit Bay, Turkey. Environ Monit Assess 123:219–231

    CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2–3):633–640

    CAS  Google Scholar 

  • Pérez-Ruzafa A, Pérez-Ruzafa IM, Newton A, Marcos C (2019) Coastal lagoons: environmental variability, ecosystem complexity, and goods and services uniformity. In: Coasts and estuaries: the future. Elsevier, Amsterdam, pp 253–276

    Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    CAS  Google Scholar 

  • Petranich E, Croce S, Crosera M, Pavoni E, Faganeli J, Adami G, Covelli S (2018) Mobility of metal (loid) s at the sediment-water interface in two tourist port areas of the Gulf of Trieste (northern Adriatic Sea). Environ Sci Pollut Res 25(27):26887–26902

    CAS  Google Scholar 

  • Pinto MI, Burrows HD, Sontag G, Vale C, Noronha JP (2016) Priority pesticides in sediments of European coastal lagoons: a review. Mar Pollut Bull 112:6–16

    CAS  Google Scholar 

  • Pitacco V, Crocetta F, Orlando-Bonaca M, Mavrič B, Lipej L (2017) The Mediterranean stony coral Cladocora caespitosa (Linnaeus, 1767) as habitat provider for molluscs: colony size effect. J Sea Res 129:1–11

    Google Scholar 

  • Plum LM, Rink L, Haase H (2010) (2010) the essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  Google Scholar 

  • Prange JA, Dennison WC (2000) Physiological responses of five seagrass species to trace metals. Mar Pollut Bull 41(7–12):327–336

    CAS  Google Scholar 

  • Premier V, de Souza Machado AA, Mitchell S, Zarfl C, Spencer K, Toffolon M (2019) A model-based analysis of metal fate in the thames estuary. Estuar Coasts 42(4):1185–1201. https://doi.org/10.1007/s12237-019-00544-y

    Article  CAS  Google Scholar 

  • Rahman MS, Saha N, Molla AH, Al-Reza SM (2014) Assessment of anthropogenic influence on heavy metals contamination in the aquatic ecosystem components: water, sediment, and fish. Soil and Sediment Contamination: An Int J 23(4):353–373

    Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160

    CAS  Google Scholar 

  • Rai LC, Gaur JP (eds) (2012) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer Science & Business Media, Berlin

    Google Scholar 

  • Rainbow PS, Luoma SN (2011) Trace metals in aquatic invertebrates. In: Environmental contaminants in biota. CRC Press, Boca Raton, FL, pp 231–254

    Google Scholar 

  • Ramesh R, Subramanian V (1988) Temporal, spatial and size variation in the sediment transport in the Krishna River basin, India. J Hydrol 98(1–2):53–65. https://doi.org/10.1016/0022-1694(88)90205-3

    Article  Google Scholar 

  • Rao NS, Ghermandi A, Portela R, Wang X (2015) Global values of coastal ecosystem services: a spatial economic analysis of shoreline protection values. Ecosyst Serv 11:95–105. https://doi.org/10.1016/j.ecoser.2014.11.011

    Article  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  Google Scholar 

  • Ryu J, Khim JS, Kang SG, Kang D, Lee CH, Koh CH (2011) The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environ Pollut 159(10):2622–2629

    CAS  Google Scholar 

  • Sabdono A (2009) Heavy metal levels and their potential toxic effect on coral Galaxea fascicularis from Java Sea, Indonesia. Res J Environ Sci 3:96–102

    CAS  Google Scholar 

  • Sannigrahi S, Zhang Q, Pilla F, Joshi PK, Basu B, Keesstra S, Roy PS, Wang Y, Sutton PC, Chakraborti S, Paul SK, Sen S (2020) Responses of ecosystem services to natural and anthropogenic forcings: a spatial regression based assessment in the world’s largest mangrove ecosystem. Sci Total Environ 715. https://doi.org/10.1016/j.scitotenv.2020.137004

  • Santhanam P (2011) An investigation on heavy metals accumulation in water, sediment and small marine food chain (plankton and fish) from Coromandel Coast, southeast coast of India. Indian J Nat Sci Int Bimonthly. ISSN 976, 0997

    Google Scholar 

  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments—a review. Front Environ Sci 7. https://doi.org/10.3389/fenvs.2019.00066

  • Sharifuzzaman SM, Rahman H, Ashekuzzaman SM, Islam MM, Chowdhury SR, Hossain MS (2016) Heavy metals accumulation in coastal sediments. In: Environmental remediation technologies for metal-contaminated soils. Springer, Berlin, pp 21–42

    Google Scholar 

  • Sobariu DL, Fertu DIT, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PFX, Gavrilescu M (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134. https://doi.org/10.1016/j.nbt.2016.09.002

    Article  CAS  Google Scholar 

  • Sodango TH, Li X, Sha J, Bao Z (2018) Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J Health Pollut 8:53–70

    Google Scholar 

  • Spiegel J, Maystre LY (1998) Environmental pollution control and prevention. In: Stellman JM, editor. Encyclopedia of Occupational Health and Safety. 4th ed.Vol 2. Geneva: International Labour Office; 1998. Section 55. 

    Google Scholar 

  • Suja S, Kessarkar PM, Fernandes LL, Kurian S, Tomer A (2017) Spatial and temporal distribution of metals in suspended particulate matter of the Kali estuary, India. Estuar Coast Shelf Sci 196:10–21. https://doi.org/10.1016/j.ecss.2017.06.024

    Article  CAS  Google Scholar 

  • Sullivan JJ, Timmins SM, Williams PA (2005) Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N Z J Ecol 29(1):1–10

    Google Scholar 

  • Sundaramanickam A, Shanmugam N, Cholan S, Kumaresan S, Madeswaran P, Balasubramanian T (2016) Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, southeast coast of India. Environ Pollut 218:186–195

    CAS  Google Scholar 

  • Susana Villanueva F, Botello AV (1998) Metal pollution in coastal areas of Mexico. Rev Environ Contam Toxicol 157:53–94. https://doi.org/10.1007/978-1-4612-0625-5_3

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164

    Google Scholar 

  • Unsworth RKF, Nordlund LM, Cullen-Unsworth LC (2019) Seagrass meadows support global fisheries production. Conserv Lett 12(1). https://doi.org/10.1111/conl.12566

  • van Dam J, Andrew N, Uthicke S, Mueller J (2011). Chemical pollution on coral reefs: exposure and ecological effects. https://doi.org/10.2174/978160805121210187

  • van der Schyff V, Yive N, Bouwman H (2020) Metal concentrations in corals from South Africa and the Mascarene Basin: a first assessment for the Western Indian Ocean. Chemosphere 239. https://doi.org/10.1016/j.chemosphere.2019.124784

  • van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY, Cormick C, Crean A, Damjanovic K, Epstein H, Harrison PL, Jones TA, Miller M, Pears RJ, Peplow LM, Raftos DA, Schaffelke B, Stewart K, Torda G, Wachenfeld D, Weeks AR, Putnam HM (2017) Shifting paradigms in restoration of the world’s coral reefs. Glob Chang Biol 23:3437–3448

    Google Scholar 

  • Viles H, Spencer T (1995) Coastal problems: geomorphology, ecology and society at the coast. Arnold, London. https://doi.org/10.2307/3059890

    Book  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10(3):268–292

    Google Scholar 

  • Wang SL, Xu XR, Sun YX, Liu JL, Li HB (2013) Heavy metal pollution in coastal areas of South China: a review. Mar Pollut Bull 76:7–15

    CAS  Google Scholar 

  • Wang Y, Jiao JJ, Zhang K, Zhou Y (2016) Enrichment and mechanisms of heavy metal mobility in a coastal quaternary groundwater system of the Pearl River Delta, China. Sci Total Environ 545–546:493–502. https://doi.org/10.1016/j.scitotenv.2015.12.019

    Article  CAS  Google Scholar 

  • Warren Flint R (1985) Coastal ecosystem dynamics: relevance of benthic processes. Mar Chem 16(4):351–367. https://doi.org/10.1016/0304-4203(85)90056-8

    Article  Google Scholar 

  • Wei M, Yanwen Q, Zheng B, Zhang L (2008) Heavy metal pollution in Tianjin Bohai bay, China. J Environ Sci 20(7):814–819

    Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollut Bull 28:277–290

    CAS  Google Scholar 

  • Wu Q, Tam NFY, Leung JYS, Zhou X, Fu J, Yao B, Huang X, Xia L (2014) Ecological risk and pollution history of heavy metals in Nansha mangrove, South China. Ecotoxicol Environ Saf 104(1):143–151. https://doi.org/10.1016/j.ecoenv.2014.02.017

    Article  CAS  Google Scholar 

  • Wu W, Wu P, Yang F, Sun DL, Zhang DX, Zhou YK (2018) Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci Total Environ 630:53–61. https://doi.org/10.1016/j.scitotenv.2018.02.183

    Article  CAS  Google Scholar 

  • Yan C, Li Q, Zhang X, Li G (2010) Mobility and ecological risk assessment of heavy metals in surface sediments of Xiamen Bay and its adjacent areas, China. Environ Earth Sci 60(7):1469–1479. https://doi.org/10.1007/s12665-009-0282-3

    Article  CAS  Google Scholar 

  • Yan Z, Sun X, Xu Y, Zhang Q, Li X (2017) Accumulation and tolerance of mangroves to heavy metals: a review. Curr Pollut Rep 3:302–317

    CAS  Google Scholar 

  • Yang T, Diao X, Cheng H, Wang H, Zhou H, Zhao H, Chen CM (2020) Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, sediments and seawater from coral reefs of Hainan, China. Environ Pollut 264:114719

    CAS  Google Scholar 

  • Yang CP, Liu Y, Shan BB, Xu J, Yu W, Sun DR, Zhang ZW (2021) Heavy metal concentrations and associated health risks in edible tissues of marine nekton from the outer Pearl River Estuary, South China Sea. Environ Sci Pollut Res 28(2):2108–2118

    CAS  Google Scholar 

  • Yi Y, Xiao M, Mostofa KMG, Xu S, Wang Z (2019) Spatial variations of trace metals and their complexation behavior with DOM in the water of Dianchi Lake, China. Int J Environ Res Public Health 16:4919. https://doi.org/10.3390/ijerph16244919

    Article  CAS  Google Scholar 

  • Young RA (2005) Toxicity profiles: toxicity summary for cadmium, risk assessment information system. RAIS, Univ Tennessee

    Google Scholar 

  • Zampieri BDB, da Costa Andrade V, Chinellato RM, Garcia CAB, de Oliveira MA, Brucha G, de Oliveira AJFC (2020) Heavy metal concentrations in Brazilian port areas and their relationships with microorganisms: can pollution in these areas change the microbial community? Environ Monit Assess 192(8):1–17

    Google Scholar 

  • Zhang W, Liu X, Cheng H, Zeng EY, Hu Y (2012) Heavy metal pollution in sediments of a typical mariculture zone in South China. Mar Pollut Bull 64(4):712–720. https://doi.org/10.1016/j.marpolbul.2012.01.042

    Article  CAS  Google Scholar 

  • Zhang C, Yu Z-G, Zeng G-M, Jiang M, Yang Z-Z, Cui F, Zhu M-Y, Shen L-Q, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    CAS  Google Scholar 

  • Zhao Y, Xu M, Liu Q, Wang Z, Zhao L, Chen Y (2018) Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: a case study of the Sheyang Estuary. Mar Pollut Bull 137:601–609. https://doi.org/10.1016/j.marpolbul.2018.10.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Piyush Tripathi thanks UGC for providing fellowship. Pawan Kumar Jha thanks the University Grants Commission (UGC), Govt. of India, for providing financial support (No. F.30-373/2017(BSR)). Authors thank the University of Allahabad for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, P., Singhal, A., Jha, P.K. (2022). Metal Transport and Its Impact on Coastal Ecosystem. In: Madhav, S., Nazneen, S., Singh, P. (eds) Coastal Ecosystems. Coastal Research Library, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-84255-0_10

Download citation

Publish with us

Policies and ethics