Skip to main content

Cardiovascular System

  • Chapter
  • First Online:
Keeling's Fetal and Neonatal Pathology
  • 1414 Accesses

Abstract

Heart disease is one of the commonest abnormalities of the fetus and infant. Malformation of the heart is the commonest congenital malformation and accounts for significant morbidity and mortality in utero and postnatally. This chapter gives a brief overview of cardiac development and extensive discussion of the methods of pathological examination of the heart, including histological sampling. Congenital heart disease has a reputation as a particularly difficult area of pathology. With care and following a few simple rules, all but the most complex cases can be confidently tackled. All the commoner forms are described and illustrated together with an account of heart disease in the fetus. The cardiomyopathies are covered in detail, especially metabolic and mitochondrial cardiomyopathy. Myocarditis, ischemia and infraction, tumors and abnormalities of the cardiac rhythm are all discussed in detail. Already many gene mutations have been identified for cardiomyopathy and channelopathies in particular and the commoner defects are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhirome E, Walton NA, Nogee JM, Jay PY. The complex genetic basis of congenital heart defects. Circ J. 2017;81:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crispi F, Gratacos E. Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagn Ther. 2012;32:47–64.

    Article  PubMed  Google Scholar 

  3. Raissadati A, Nieminen H, Jokinen E, Sairanen H. Progress in late results among pediatric cardiac surgery cases: a population-based 6-decade study with 98% follow-up. Circulation. 2015;131:347–53.

    Article  PubMed  Google Scholar 

  4. Taylor AM, Arthurs OJ, Sebire NJ. Postmortem cardiac imaging in fetuses and children. Pediatr Radiol. 2015;45:549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hutchinson JC, Arthurs OJ, Ashworth MT, et al. Clinical utility of post-mortem microcomputed tomography of the fetal heart: diagnostic imaging vs macroscopic dissection. Ultrasound Obstet Gynecol. 2016;47:58–64.

    Article  CAS  PubMed  Google Scholar 

  6. Jensen B, Wang T, Christoffels VM, Moorman AF. Evolution and development of the building plan of the vertebrate heart. Biochim Biophys Acta. 1833;2013:783–94.

    Google Scholar 

  7. Sylva M, van der Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet Part A. 2014;164A:1347–71.

    Article  PubMed  Google Scholar 

  8. Gittenberger de Groot AC, Bartelings MM, Deruiter MC, Poelman RE. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res. 2005;57:169–76.

    Article  PubMed  Google Scholar 

  9. Harvey RP. Patterning of the vertebrate heart. Nat Rev Genet. 2002;3:544–56.

    Article  CAS  PubMed  Google Scholar 

  10. Männer J. On the form problem of embryonic heart loops, its geometrical solutions, and a new biophysical concept of cardiac looping. Ann Anat. 2013;195:312–23.

    Article  PubMed  Google Scholar 

  11. Butcher JT, McQuinn TC, Sedmera D, Turner D, Markwald RR. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ Res. 2007;100:1503–11.

    Article  CAS  PubMed  Google Scholar 

  12. Moorman AFM, Christoffels VM. Cardiac chamber formation: development, genes and evolution. Physiol Rev. 2003;83:1223–67.

    Article  CAS  PubMed  Google Scholar 

  13. Sizarov A, Ya J, de Boer BA, et al. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation. 2011;123:1125–35.

    Article  PubMed  Google Scholar 

  14. Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol. 2013;207:585–615.

    Article  Google Scholar 

  15. Moorman A, Webb S, Brown NA, et al. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005;243:287–335.

    Article  CAS  PubMed  Google Scholar 

  17. Manasek FJ, Icardo J, Nakamura A, et al. Cardiogenesis: developmental mechanisms and embryology. In: Fozzard HA, Haber E, Jennings RB, et al., editors. The heart and cardiovascular system. New York: Raven Press; 1986. p. 965–85.

    Google Scholar 

  18. Anderson RH, Webb S, Brown NA, et al. Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003;89:1110–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Wijk B, van den Berg G, Abu-Issa R, et al. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circ Res. 2009;105:431–4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pérez-Pomares JM, de la Pompa JL, Franco D, et al. Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology—a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovasc Res. 2016;109:204–16.

    Article  PubMed  Google Scholar 

  21. Miquerol L, Kelly RG. Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol. 2013;2:17–29.

    Article  CAS  PubMed  Google Scholar 

  22. Rudolph AM. The fetal circulation and postnatal adaptation. In: Rudolph AM, editor. Congenital diseases of the heart: clinical-physiological considerations. 2nd ed. Armonk, NY: Futura Publishing; 2001. p. 3–44.

    Google Scholar 

  23. Rigby ML, Shinebourne EA. Development of the cardiovascular system. Functional development. In: Davis JA, Dobbing J, editors. Scientific foundation of paediatrics. London: Butterworth-Heinemann; 1981. p. 373–89.

    Google Scholar 

  24. Kondo M, Itoh S, Kunikata T, et al. Time of closure of ductus venosus in term and preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2001;85:F57–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Pragh R. The segmental approach to diagnosis in congenital heart disease. In: Birth defects: original articles series, vol. 8. Baltimore: Williams & Wilkins; 1972. p. 4–23.

    Google Scholar 

  26. Basso C, Burke M, Fornes P, et al. Association for European cardiovascular pathology: guidelines for autopsy investigation of sudden cardiac death. Virchows Arch. 2008;452:11–8.

    Article  PubMed  Google Scholar 

  27. Goyal VK. Early appearance and rate of lipofuscin pigment accumulation in human myocardium. Exp Gerentol. 1981;16:219–22.

    Article  CAS  Google Scholar 

  28. Personen E. Extrinsic and intrinsic factors relating to intimal thickening in children. Acta Paediatr Suppl. 2004;446:43–7.

    Google Scholar 

  29. DeSa DJ. Coronary artery ruptures in stillbirths. Pediatr Dev Pathol. 2002;5:605.

    Google Scholar 

  30. Loukas M, Abel M, Tubbs RS, et al. The cardiac lymphatic system. Clin Anat. 2011;24:684–91.

    Article  PubMed  Google Scholar 

  31. Hill DA, Swanson PE. Myocardial extramedullary haematopoiesis: a clinicopathologic study. Mod Pathol. 2000;13:779–87.

    Article  CAS  PubMed  Google Scholar 

  32. Rowlatt UF, Rimoldi HJA, Lev M. The quantitative anatomy of the normal child’s heart. Pediatr Clin N Amer. 1963;10:499–588.

    Article  Google Scholar 

  33. Eckner FAO, Brown BW, Davidson DL, Glagov S. Dimensions of normal human hearts. Arch Pathol Lab Med. 1969;88:497–507.

    CAS  Google Scholar 

  34. Pryce JW, Bamber AR, Ashworth MT, et al. Reference ranges for organ weights of infants at autopsy: results of >1,000 consecutive cases from a single centre. BMC Clin Pathol. 2014;14:18.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jordan SC, Scott O. Incidence, aetiology and recurrence of congenital heart disease. In: Jordan SC, Scott O, editors. Heart disease in paediatrics. 3rd ed. Oxford: Butterworth Heniemann; 1989. p. 3–9.

    Chapter  Google Scholar 

  36. Arey JB. Malformations of the ventricular septum. In: Arey JB, editor. Cardiovascular pathology in infants and children. Philadelphia: WB Saunders Company; 1984. p. 77–111.

    Google Scholar 

  37. Anderson RH, Lennox CC, Zuberbuhler JR. The morphology of ventricular septal defects. Pespect Pediatr Pathol. 1984;8:235–68.

    CAS  Google Scholar 

  38. Al-Marsafawy HMF, Ho SY, Redington AN, Anderson RH. The relationship of the outlet septum to the aortic outflow tract in hearts with interruption of the aortic arch. J Thorac Cardiovasc Surg. 1995;109:1225–36.

    Article  CAS  PubMed  Google Scholar 

  39. Alpert BS, Cook DH, Varghese PJ, et al. Spontaneous closure of small ventricular septal defects: ten year follow up. Pediatrics. 1979;63:204–6.

    Article  CAS  PubMed  Google Scholar 

  40. Becker AE, Anderson RH. Atrioventricular septal defects. What’s in a name? J Thorac Cardiovasc Surg. 1982;83:461–9.

    Article  CAS  PubMed  Google Scholar 

  41. Rastelli G, Kirklin JW, Titus JL. Anatomic observations on complete form of persistent common atrioventricular canal with special reference to atrioventricular valves. Mayo Clin Proc. 1966;41:296.

    CAS  PubMed  Google Scholar 

  42. Anderson RH, Ho SY, Falcao S. The diagnostic features of atrioventricular septal defect with common atrioventricular orifice. Cardiol Young. 1998;8:33–49.

    Article  CAS  PubMed  Google Scholar 

  43. Thiene G, Wenink ACG, Frescura C, et al. The surgical anatomy of the conduction tissues in atrioventricular defects. J Thorac Cadiovasc Surg. 1981;82:928–37.

    Article  CAS  Google Scholar 

  44. Weintraub RG, Brawn WJ, Venables AW, et al. Two patch repair of complete atrioventricular septal defect in the first year of life: results and sequential assessment of atrioventricular valve function. J Thorac Cardiovas Surg. 1990;99:320–6.

    Article  CAS  Google Scholar 

  45. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first decades of life; an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:1489–94.

    Article  Google Scholar 

  46. Fisher DC, Fisher EA, Budd JH, et al. The incidence of patent foramen ovale in 1,000 consecutive patients. A contrast transesophageal echocardiography study. Chest. 1995;107:1504–9.

    Article  CAS  PubMed  Google Scholar 

  47. Lee ME, Sade RM. Coronary sinus septal defect. Surgical considerations. J Thorac Cardiovasc Surg. 1979;78:563–9.

    Article  CAS  PubMed  Google Scholar 

  48. Al Zaghal AM, Li J, Anderson RH, et al. Anatomic criteria for the diagnosis of sinus venosus defects. Heart. 1997;78:298–304.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Silver MM, Freedom RM, Silver MD, et al. The morphology of the human newborn ductus arteriosus: a reappraisal of its structure and closure with special reference to prostaglandin E1. Hum Pathol. 1981;12:1123–36.

    Article  CAS  PubMed  Google Scholar 

  50. Rudolph AM. The ductus arteriosus and persistent patency of the ductus arteriosus. In: Rudolph AM, editor. Congenital diseases of the heart: clinical-physiological considerations. 2nd ed. Armonk, NY: Futura Publishing; 2001. p. 155–96.

    Google Scholar 

  51. Freedom RM, Moes CA, Pelech A, et al. Bilateral ductus arteriosus (or remnant): an analysis of 27 patients. Am J Cardiol. 1984;53:884–91.

    Article  CAS  PubMed  Google Scholar 

  52. Schiessl B, Schneider KT, Zimmerman A, et al. Prenatal constriction of the fetal ductus arteriosus – related to maternal pain medication. Z Geburtshilfe Neonatol. 2005;209:65–8.

    Article  CAS  PubMed  Google Scholar 

  53. Tynan M. The ductus arteriosus and its closure. N Eng J Med. 1993;329:1570–2.

    Article  CAS  Google Scholar 

  54. Bancalari E. Changes in the pathogenesis and prevention of chronic lung disease of prematurity. Am J Perinatol. 2001;18:1–9.

    Article  CAS  PubMed  Google Scholar 

  55. Xu E, Delpey JG, Finel E, Pennanéach A. Ductus arteriosus aneurysm: case report and review of the literature. Arch Pediatr. 2018;25:283–5.

    Article  CAS  PubMed  Google Scholar 

  56. Pellegrino A, Deverall PB, Anderson RH, et al. Aortic coarctation in the first three months of life. Anatomopathological study with respect to treatment. J Thorac Cardiovasc Surg. 1985;89:121–7.

    Article  CAS  PubMed  Google Scholar 

  57. Becker AE, Becker MJ, Edwards JE. Anomalies associated with coarctation of the aorta. Particular reference to infancy. Circulation. 1970;41:1067–75.

    Article  CAS  PubMed  Google Scholar 

  58. Elzenga NJ, Gittenberger de Groot AC. Localised coarctation of the aorta. An age dependent spectrum. Br Heart J. 1983;49:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Russell GA, Berry PJ, Watterson K, et al. Patterns of ductal tissue in coarctation of the aorta in the first three months of life. J Thorac Cardiovasc Surg. 1991;102:368–9.

    Article  Google Scholar 

  60. Daubeney PE, Delaney DJ, Anderson RH, et al. Pulmonary atresia with intact ventricular septum: range of morphology in a population based study. J Am Coll Cardiol. 2002;39:1670–9.

    Article  PubMed  Google Scholar 

  61. Gittenberger de Groot AC, Erlap I, Lie-Venema H, et al. Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect. Acta Pediatr Suppl. 2004;93:13–9.

    Article  CAS  Google Scholar 

  62. Stamm C, Anderson RH, Ho YS. Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis. J Am Coll Cardiol. 1998;31:1420–5.

    Article  CAS  PubMed  Google Scholar 

  63. Sreeram N, Kitchener D, Smith A. Spectrum of valvular abnormalities in Noonan’s syndrome – a pathologic study. Cardiol Young. 1994;4:62–6.

    Article  Google Scholar 

  64. Anderson RH, Allwork SP, Ho SY, et al. Surgical anatomy of tetralogy of Fallot. J Thorac Cardiovasc Surg. 1981;81:887–96.

    Article  CAS  PubMed  Google Scholar 

  65. Emmanouilides GC, Thanopoulos B, Siassi B, et al. Agenesis of ductus arteriousus associated with the syndrome of tetralogy of Fallot and absent pulmonary valve. Am J Cardiol. 1976;37:403–9.

    Article  Google Scholar 

  66. Zhao HX, Miller DC, Reitz BA, et al. Surgical repair of tetralogy of Fallot. Long term follow up with particular emphasis on late death and reoperation. J Thorac Cardiovasc Surg. 1985;89:204–20.

    Article  CAS  PubMed  Google Scholar 

  67. Liao PK, Edwards WD, Julsrud PR, et al. Pulmonary blood supply in patients with pulmonary atresia and ventricular septal defect. J Am Coll Cardiol. 1985;6:1343–50.

    Article  CAS  PubMed  Google Scholar 

  68. Edwards JE. Pathology of left ventricular outflow tract obstruction. Circulation. 1965;31:586–99.

    Article  CAS  PubMed  Google Scholar 

  69. McKay R, Smith A, Leung MP, et al. Morphology of the ventriculoaortic junction in critical aortic stenosis. Implications for hemodynamic function and clinical management. J Thorac Cardiovasc Surg. 1992;104:434–42.

    Article  CAS  PubMed  Google Scholar 

  70. Bartram U, Bartelings MM, Kramer HH, et al. Congenital polyvalvular disease: a review. Pediatr Cardiol. 2001;22:93–101.

    Article  CAS  PubMed  Google Scholar 

  71. Peterson TA, Todd DB, Edwards JE. Supravalvular aortic stenosis. J Thorac Cardiovasc Surg. 1965;50:734–41.

    Article  CAS  PubMed  Google Scholar 

  72. Van Son JAM, Edwards WD, Danielson GK. Pathology of coronary arteries, myocardium and great arteries in supravalvular aortic stenosis. Report of five cases with implications for surgical treatment. J Thorac Cardiovasc Surg. 1994;108:21–8.

    Article  PubMed  Google Scholar 

  73. Salmon AP. Hypoplastic left heart syndrome – outcome and management. Arch Dis Child. 2001;85:450–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Elzenga NJ, Gittenberger de Groot AC. Coarctation and related aortic arch anomalies in hypoplastic left heart syndrome. Int J Cardiol. 1985;8:379–93.

    Article  CAS  PubMed  Google Scholar 

  75. O’Connor WN, Cash JB, Cottrill CM. Ventriculocoronary connections in hypoplastic left hearts: an autopsy microscopic study. Circulation. 1992;66:1078–86.

    Article  Google Scholar 

  76. Sauer U, Gittenberger de Groot AC, Geishauser M, et al. Coronary arteries in the hypoplastic left heart syndrome. Histopathologic and histometrical study and implications for surgery. Circulation. 1989;80:168–76.

    Google Scholar 

  77. Allwork SP, Bentall HH, Becker AE, et al. Congenitally corrected transposition of the great arteries: morphologic study of 32 cases. Am J Cardiol. 1976;38:910–23.

    Article  CAS  PubMed  Google Scholar 

  78. Yacoub MH, Radley SR. Anatomy of the coronary arteries in transposition of the great arteries and methods of their transfer in anatomical correction. Thorax. 1978;33:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson RH, Henry GW, Becker AE. Morphologic aspects of complete transposition. Cardiol Young. 1991;1:41.

    Article  CAS  PubMed  Google Scholar 

  80. Collett RW, Edwards JE. Persistent truncus arteriosus: a classification according to anatomic types. Surg Clin N Amer. 1949;29:1245–70.

    Article  CAS  PubMed  Google Scholar 

  81. de la Cruz MV, Cayre R, Angelini P, et al. Coronary arteries in truncus arteriosus. Am J Cardiol. 1990;66:1482–6.

    Article  PubMed  Google Scholar 

  82. Anderson RH, Becker AE, Tynan M, et al. The univentricular atrioventricular connection: getting to the root of a thorny problem. Am J Cardiol. 1984;54:822–8.

    Article  CAS  PubMed  Google Scholar 

  83. Anderson RH, McCarthy K, Cook AC. Double outlet right ventricle. Cardiol Young. 2001;11:329.

    Article  CAS  PubMed  Google Scholar 

  84. Konstantinov IE. Taussig-Bing anomaly: from original description to the current era. Tex Heart Inst J. 2009;36:580–5.

    PubMed  PubMed Central  Google Scholar 

  85. DeLisle G, Ando M, Calder AL, et al. Total anomalous pulmonary venous connection: report of 93 autopsied cases with emphasis on diagnostic and surgical considerations. Am Heart J. 1976;91:99–122.

    Article  CAS  PubMed  Google Scholar 

  86. Neill CA, Ferencz C, Sabiston DC, et al. The familial occurrence of hypoplastic right lung with systemic arterial supply and venous drainage. “scimitar syndrome”. Johns Hopkins Med J. 1960;107:1–15.

    CAS  Google Scholar 

  87. Sun C-CJ, Doyle T, Ringel RE. Pulmonary vein stenosis. Hum Pathol. 1995;26:880–6.

    Article  CAS  PubMed  Google Scholar 

  88. Fong LV, Anderson RH, Park SC, Zuberbuhler JR. Morphologic features of stenosis of the pulmonary veins. Am J Cardiol. 1988;62:1136–8.

    Article  CAS  PubMed  Google Scholar 

  89. Anderson RK, Lie JT. Pathologic anatomy of Ebstein’s anomaly of the heart revisited. Am J Cardiol. 1978;41:739–45.

    Article  CAS  PubMed  Google Scholar 

  90. Rosenquist GC, Sweeney LJ, McAllister HA. Relationships of the tricuspid valve to the membranous ventricular septum in Down’s syndrome without endocardial cushion defect: study of 28 specimens, 14 with a ventricular septal defect. Am Heart J. 1975;90:458–62.

    Article  CAS  PubMed  Google Scholar 

  91. Rigby ML, Carvalho JS, Anderson RH, et al. The investigation and diagnosis of tricuspid atresia. Int J Cardiol. 1990;27:1–17.

    Article  CAS  PubMed  Google Scholar 

  92. Uhl HSM. A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp. 1952;91:197–209.

    CAS  PubMed  Google Scholar 

  93. Corazza G, Soliani M, Bava GL. Uhl’s anomaly in a newborn. Eur J Pediatr. 1981;137:347–52.

    Article  CAS  PubMed  Google Scholar 

  94. Basso C, Bauce B, Corrado D, et al. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2012;9:223–33.

    Article  CAS  Google Scholar 

  95. Macartney FJ, Zuberbuhler JR, Anderson RH. Morphological considerations pertaining to recognition of atrial isomerism. Consequences for sequential chamber localisation. Br Heart J. 1980;44:657–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Melhuish BPP, Van Pragh R. Juxtaposition of the atrial appendages. A sign of severe cyanotic congenital heart disease. Br Heart J. 1968;30:269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yetman AT, McCrindle BW, McDonald C, et al. Myocardial bridging in children with cardiomyopathy – a risk factor for sudden death. N Eng J Med. 1998;339:1201–9.

    Article  CAS  Google Scholar 

  98. Becker AE. Variations of the main coronary arteries. In: Becker AE, Losekoot TG, Marcellettti C, Anderson RH, editors. Paediatric cardiology, vol. 3. Edinburgh: Churchill Livingstone; 1981. p. 263–77.

    Google Scholar 

  99. Neufeld HN, Schneeweiss A. Congenital variations of coronary arteries. In: Neufeld HN, Schneeweiss A, editors. Coronary artery diseases in infants and children. Philadelphia: Lea & Febiger; 1983. p. 65–78.

    Google Scholar 

  100. Ness MJ, McManus BM. Anomalous right coronary origin in otherwise unexplained infant death. Arch Pathol Lab Med. 1988;112:626–9.

    CAS  PubMed  Google Scholar 

  101. Kimbiris D, Iskandrian AS, Segal BL, et al. Anomalous aortic origin of coronary arteries. Circulation. 1978;58:606–15.

    Article  CAS  PubMed  Google Scholar 

  102. Arey JB. Malformations of the coronary vessels. In: Arey JB, editor. Cardiovascular pathology in infants and children. Philadelphia: WB Saunders Company; 1984. p. 204–17.

    Google Scholar 

  103. Buirsky G, Jordan SC, Joffe HS, et al. Superior vena caval abnormalities: their occurrence rate, associated cardiac abnormalities and angiographic classification in a paediatric population with congenital heart disease. Clin Radiol. 1986;37:131–8.

    Article  Google Scholar 

  104. Cantrell JR, Haller JA, Ravitch MM. A syndrome of congenital defects involving the abdominal wall, sternum, diaphragm, pericardium and heart. Surg Gynecol Obstet. 1958;107:602–14.

    CAS  PubMed  Google Scholar 

  105. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  106. Gill HK, Splitt M, Sharland GK, et al. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J Am Coll Cardiol. 2003;42:923–9.

    Article  PubMed  Google Scholar 

  107. Poon LC, Huggon IC, Zidere V, Allan LD. Tetralogy of Fallot in the fetus in the current era. Ultrasound Obstet Gynecol. 2007;29:625–7.

    Article  CAS  PubMed  Google Scholar 

  108. Rodriguez JG, Holmes R, Martin R, Wilde P, Soothill P. Prognosis following prenatal diagnosis of heart malformations. Early Hum Dev. 1998;52:13–20.

    Article  CAS  PubMed  Google Scholar 

  109. Hornberger LK, Sanders SP, Azaria JJT, et al. Left heart obstructive lesions and left ventricular growth in the midtrimester fetus: a longitudinal study. Circulation. 1995;92:1531–8.

    Article  CAS  PubMed  Google Scholar 

  110. Yamamoto Y, Hornberger LK. Progression of outflow tract obstruction in the fetus. Early Hum Dev. 2012;88:279–85.

    Article  PubMed  Google Scholar 

  111. Maeno YV, Boutin C, Hornberger LK, et al. Prenatal diagnosis of right ventricular outflow tract obstruction with intact ventricular septum, and detection of ventriculocoronary connections. Heart. 1999;81:661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chew C, Halliday JL, Riley MM, Penny DJ. Population-based study of antenatal detection of congenital heart disease by ultrasound examination. Ultrasound Obstet Gynecol. 2007;29:619–24.

    Article  CAS  PubMed  Google Scholar 

  113. Allan LD, Sharland GK, Milburn A, et al. Prospective diagnosis of 1,006 consecutive cases of congenital heart disease in the fetus. J Am Coll Cardiol. 1994;23:1452–8.

    Article  CAS  PubMed  Google Scholar 

  114. Hoffman JI. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol. 1995;16:155–65.

    Article  CAS  PubMed  Google Scholar 

  115. Eronen M. Outcome of fetuses with heart disease diagnosed in utero. Arch Dis Child. 1997;77:F41–6.

    Article  CAS  Google Scholar 

  116. Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116:e833–8.

    Article  PubMed  Google Scholar 

  117. Corrigan N, Brazil DP, McAuliffe F. Fetal cardiac effects of maternal hyperglycemia during pregnancy. Birth Defects Res A Clin Mol Teratol. 2009;85:523–30.

    Article  CAS  PubMed  Google Scholar 

  118. Yates RS. The influence of prenatal diagnosis on postnatal outcome in patients with structural congenital heart disease. Prenat Diagn. 2004;24:1143–9.

    Article  PubMed  Google Scholar 

  119. Allan LD. Rationale for and current status of prenatal cardiac intervention. Early Hum Dev. 2012;88:287–90.

    Article  PubMed  Google Scholar 

  120. Dimitropoulos A, McQuillen PS, Sethi V, et al. Brain injury and development in newborns with critical congenital heart disease. Neurology. 2013;81:241–8.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Guo T, Chau V, Peyvandi S, et al. White matter injury in term neonates with congenital heart diseases: topology & comparison with preterm newborns. Neuroimage. 2019;185:742–9.

    Article  PubMed  Google Scholar 

  122. Simchen MJ, Toi A, Silver M, et al. Fetal cardiac calcifications: report of four prenatally diagnosed cases and review of the literature. Ultrasound Obstet Gynecol. 2006;27:325–30.

    Article  CAS  PubMed  Google Scholar 

  123. McFadden DE, Taylor GP. Cardiac abnormalities and nonimmune hydrops fetalis: coincidental, not causal, relationship. Pediatr Pathol. 1989;9:11–7.

    Article  CAS  PubMed  Google Scholar 

  124. Siven M, Ley D, Hagerstrand I, Svenningsen N. Agenesis of the ductus venosus and its correlation to hydrops fetalis and the hepatic fetal circulation: case reports and review of the literature. Pediatr Pathol Lab Med. 1995;15:39–50.

    Article  CAS  PubMed  Google Scholar 

  125. Zuberbuhler JR, Neches WH, Park SC. Infectious endocarditis – an experience spanning three decades. Cardiol Young. 1994;4:244–51.

    Article  Google Scholar 

  126. Liesman RM, Pritt BS, Maleszewski JJ, Patel R. Laboratory diagnosis of infective endocarditis. J Clin Microbiol. 2017;55:2599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Choi M, Mailman TL. Pneumococcal endocarditis in infants and children. Pediatr Infect Dis J. 2004;23:166–71.

    Article  PubMed  Google Scholar 

  128. Arey JB. Diseases of the endocardium, myocardium and pericardium. In: Arey JB, editor. Cardiovascular pathology in infants and children. Philadelphia: WB Saunders; 1984.

    Google Scholar 

  129. Morrow WR, Haas JE, Benjamin DR. Nonbacterial endocardial thrombosis in neonates: relationship to persistent fetal circulation. J Pediatr. 1982;100:117–22.

    Article  CAS  PubMed  Google Scholar 

  130. Favara BE, Franciosi RA, Butterfield LJ. Disseminated intravascular and cardiac thrombosis of the neonate. Am J Dis Child. 1974;127:197–204.

    CAS  PubMed  Google Scholar 

  131. Feldman AM, McNamara D. Myocarditis. N Eng J Med. 2000;343:1388–98.

    Article  CAS  Google Scholar 

  132. Kim KS, Hufnagel G, Chapman NM, Tracy S. The group B coxsackieviruses and myocarditis. Rev Med Virol. 2001;11:355–68.

    Article  CAS  PubMed  Google Scholar 

  133. Baboonian C, Davies MJ, Booth J, McKenna W. Coxsackie B viruses and heart disease. Curr Top Microbiol Immunol. 1997;233:31–52.

    Google Scholar 

  134. Keesler MJ, Fisher SD, Lipschultz SE. Cardaic manifestations of HIV infections in infants and children. Ann N Y Acad Sci. 2001;946:169–78.

    Article  CAS  PubMed  Google Scholar 

  135. Weber MA, Ashworth MT, Risdon RA, et al. Clinicopathological features of paediatric deaths due to myocarditis; an autopsy series. Arch Dis Child. 2008;93:594–8.

    Article  CAS  PubMed  Google Scholar 

  136. O’Malley A, Barry-Kinsella B, Hughes C, et al. Parvovirus infects cardiac myocytes in hydrops fetalis. Pediatr Develop Pathol. 2003;5:414–20.

    Article  Google Scholar 

  137. Vigneswaran TV, Brown JR, Breuer J, Burch M. Parvovirus B19 myocarditis in children: an observational study. Arch Dis Child. 2016;101:177–80.

    Article  PubMed  Google Scholar 

  138. Wasi J, Shuter J. Primary bacterial infection of the myocardium. Front Biosci. 2003;8:s228–31.

    Article  CAS  PubMed  Google Scholar 

  139. Rosenberg HS. Cardiovascular effects of congenital infections. Am J Cardiovasc Pathol. 1987;1:147–56.

    CAS  PubMed  Google Scholar 

  140. Beardsall K, White DK, Pinto EM, et al. Pericardial effusions and cardiac tamponade as a complication of neonatal long lines. Arch Dis Child Fetal Neonatal Ed. 2003;88:F292–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tani LY, Veasy LG, Minich LL, Shaddy RE. Rheumatic fever in children younger than 5 years: is the presentation different? Pediatrics. 2003;112:1065–8.

    Article  PubMed  Google Scholar 

  142. Chaoui R. Coronary arteries in fetal life: physiology, malformations and the “heart-sparing effect”. Acta Paediatr Suppl. 2004;446:6–12.

    Google Scholar 

  143. Makikallio K, Vuolteenaho O, Jouppila P, et al. Ultrasonic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation. 2002;105:2058–63.

    Article  PubMed  Google Scholar 

  144. Young NA, Mondestin MAJ, Bowman RL. Ischaemic changes in fetal myocardium. An autopsy series. Arch Pathol Lab Med. 1994;118:289–92.

    CAS  PubMed  Google Scholar 

  145. DeSa DJ. Coronary arterial lesions and myocardial necrosis in stillbirths and infants. Arch Dis Child. 1979;54:918–30.

    Article  CAS  Google Scholar 

  146. Riede FT, Dähnert I, Razek V, Kostelka M. Rupture of the papillary muscle of the tricuspid valve - echocardiographic diagnosis of a rare anomaly leading to critical tricuspid valve regurgitation in the newborn. Eur J Pediatr. 2010;169:165–6.

    Article  CAS  PubMed  Google Scholar 

  147. Topaz O. Myocardial calcification in neonates and infants. A unique tissue reaction. South Med J. 1991;84:891–5.

    Article  CAS  PubMed  Google Scholar 

  148. Tennstedt C, Chaoui R, Vogel M, et al. Pathologic correlation of echogenic foci in the fetal heart. Prenat Diagn. 2000;20:287–92.

    Article  CAS  PubMed  Google Scholar 

  149. Lazda EJ, Batchelor WH, Cox PM. Immunohistochemical detection of myocardial necrosis in stillbirth and neonatal death. Pediatr Dev Pathol. 2000;3:40–7.

    Article  CAS  PubMed  Google Scholar 

  150. Fishbein MC, Wang T, Matijasevic M, et al. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischaemia. Cardiovasc Pathol. 2003;12:65–71.

    Article  CAS  PubMed  Google Scholar 

  151. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies. Circulation. 2006;113:1807–16.

    Article  PubMed  Google Scholar 

  152. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.

    Article  PubMed  Google Scholar 

  153. Wigle ED, Rakowski H, Kimball BP, et al. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation. 1995;92:1680–92.

    Article  CAS  PubMed  Google Scholar 

  154. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–15.

    Article  PubMed  Google Scholar 

  155. Walsh R, Buchan R, Wilk A, et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J. 2017;38:3461–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Geier C, Gehmlich K, Ehler E, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet. 2008;17:2753–65.

    Article  CAS  PubMed  Google Scholar 

  157. Friedrich FW, Wilding BR, Reischmann S, et al. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet. 2012;21:3237–54.

    Article  CAS  PubMed  Google Scholar 

  158. McKenna WJ, Coccolo F, Elliott PM. Genes and disease expression in hypertrophic cardiomyopathy. Lancet. 1998;352:1162–3.

    Article  CAS  PubMed  Google Scholar 

  159. Güngör D, Reuser AJ. How to describe the clinical spectrum in Pompe disease? Am J Med Genet A. 2013;161A:399–400.

    Article  PubMed  Google Scholar 

  160. Servidei S, Bertini E, DiMauro S. Hereditary metabolic cardiomyopathies. Adv Pediatr. 1994;41:1–32.

    CAS  PubMed  Google Scholar 

  161. Jorge AA, Malaquias AC, Arnhold IJ, Mendonca BB. Noonan syndrome and related disorders: a review of clinical features and mutations in genes of the RAS/MAPK pathway. Horm Res. 2009;71:185–93.

    CAS  PubMed  Google Scholar 

  162. McMahon JN, Berry PJ, Joffe HS. Fatal hypertrophic cardiomyopathy in an infant of a diabetic mother. Pediatr Cardiol. 1990;11:211–2.

    Article  CAS  PubMed  Google Scholar 

  163. Israel BA, Sherman FS, Guthrie RD. Hypertrophic cardiomyopathy associated with dexamethasone therapy for chronic lung disease in preterm infants. Am J Perinatol. 1993;10:307–10.

    Article  CAS  PubMed  Google Scholar 

  164. Gilbert-Barness G, Barness LA. Non-malformative cardiovascular pathology in infants and children. Pediatr Devel Pathol. 1999;2:499–530.

    Article  CAS  Google Scholar 

  165. Badorff C, Lee G-H, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrohpin: evidence of cytoskeletal disruption in acquired cardiomyopathy. Nature Med. 1999;5:320–5.

    Article  CAS  PubMed  Google Scholar 

  166. Schwartz ML, Cox GF, Lin AE, et al. Clinical approach to genetic cardiomyopathy in children. Circulation. 1996;94:2021–38.

    Article  CAS  PubMed  Google Scholar 

  167. Kamisago M, Sharma SD, DePalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Eng J Med. 2000;343:1688–96.

    Article  CAS  Google Scholar 

  168. Grham RM, Owens WA. Pathogenesis of inherited forms of dilated cardiomyopathy. N Eng J Med. 1999;341:1759–62.

    Article  Google Scholar 

  169. Price DI, Stanford LC Jr, Braden DS, Ebeid MR, Smith JC. Hypocalcemic rickets: an unusual cause of dilated cardiomyopathy. Pediatr Cardiol. 2003;24:510–2.

    Article  CAS  PubMed  Google Scholar 

  170. Chang KTE, Taylor GP, Meschino WS, Kantor PF, Cutz E. Mitogenic cardiomyopathy: a lethal neonatal familial cardiomyopathy characterized by myocyte hyperplasia and proliferation. Hum Pathol. 2010;41:1002–8.

    Article  PubMed  Google Scholar 

  171. Louw JJ, Corveleyn A, Jia Y, et al. Homozygous loss-of-function mutation in ALMS1 causes the lethal disorder mitogenic cardiomyopathy in two siblings. Eur J Med Genet. 2014;57:532–5.

    Article  PubMed  Google Scholar 

  172. Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Eng J Med. 1997;336:267–76.

    Article  CAS  Google Scholar 

  173. Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart. 2005;91:1199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hughes SE, McKenna WJ. New insights into the pathology of inherited cardiomyopathy. Heart. 2005;91:257–64.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Selcen D, Ohno K, Engel AG. Myofibrillary myopathy: clinical, morphological and genetic studies in 63 patients. Brain. 2004;127:439–51.

    Article  PubMed  Google Scholar 

  176. D’Amati G, Leone O, di Gioia CR, et al. Arrhythmogenic right ventricular cardiomyopathy: clinicopathologic correlation based on a revised definition of pathologic patterns. Hum Pathol. 2001;32:1078–86.

    Article  PubMed  Google Scholar 

  177. Ursell PC. Noncompaction in the fetus and neonate: an autopsy study. Am J Med Genet C Semin Med Genet. 2013;163C:169–77.

    Article  PubMed  Google Scholar 

  178. Burke A, Mont E, Kutys R, et al. Left ventricular noncompaction: a pathological study of 14 cases. Hum Pathol. 2005;36:403–11.

    Article  PubMed  Google Scholar 

  179. Bleyl SB, Mumford BR, Thompson V, et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997;61:868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical characterisation of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108:2672–8.

    Article  PubMed  Google Scholar 

  181. Wong JA, Bofinger MK. Noncompaction of the left ventricular myocardium in Melnick-Needles syndrome. Am J Med Genet. 1997;71:72–5.

    Article  CAS  PubMed  Google Scholar 

  182. Karatza AA, Holder SE, Gardiner HM. Isolated non-compaction of the ventricular myocardium: prenatal diagnosis and natural history. Ultrasound Obstet Gynecol. 2003;21:75–80.

    Article  CAS  PubMed  Google Scholar 

  183. Malhorta V, Ferrans VJ, Virmani R. Infantile histiocytoid cardiomyopathy: three cases and literature review. Am Heart J. 1994;128:1009–21.

    Article  Google Scholar 

  184. Shehata BM, Patterson K, Thomas JE, et al. Histiocytoid cardiomyopathy: three new cases and review of the literature. Peadiatr Devel Pathol. 1998;1:56–69.

    Article  CAS  Google Scholar 

  185. Vallance HD, Jeven G, Wallace DC, et al. A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344 G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol. 2004;25:538–40.

    Article  CAS  PubMed  Google Scholar 

  186. Bird LM, Krous HF, Eichenfield LF, et al. Female infant with oncocytic cardiomyopathy and microphthalmia with linear skin defects (MLS): a clue to the pathogenesis of oncocytic cardiomyopathy? Am J Med Genet. 1994;53:141–58.

    Article  CAS  PubMed  Google Scholar 

  187. Rea G, Homfray T, Till J, et al. Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11. Cold Spring Harb Mol Case Stud. 2017;3:a001271.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Shehata BM, Cundiff CA, Lee K, et al. Exome sequencing of patients with histiocytoid cardiomyopathy reveals a de novo NDUFB11 mutation that plays a role in the pathogenesis of histiocytoid cardiomyopathy. Am J Med Genet A. 2015;167A:2114–21.

    Article  PubMed  Google Scholar 

  189. Reinson K, Kovacs-Nagy R, Õiglane-Shlik E, et al. Diverse phenotype in patients with complex I deficiency due to mutations in NDUFB11. Eur J Med Genet. 2019;62:103572.

    Article  PubMed  Google Scholar 

  190. El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 2016;3:2.

    Article  Google Scholar 

  191. Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40:385–94.

    PubMed  PubMed Central  Google Scholar 

  192. El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis. 1863;2017:1539–55.

    Google Scholar 

  193. Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders—past, present and future. Biochim Biophys Acta. 1659;2004:115–20.

    Google Scholar 

  194. Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial diseases and cardiomyopathies. Can J Cardiol. 2015;31:1360–76.

    Article  PubMed  Google Scholar 

  195. Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114:925–31.

    Article  PubMed  Google Scholar 

  196. Taylor GP. Neonatal mitochondrial cardiomyopathy. Pediatr Dev Pathol. 2004;7:620–4.

    Article  CAS  PubMed  Google Scholar 

  197. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, et al. Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inher Metab Dis. 1997;20:674–9.

    Article  CAS  PubMed  Google Scholar 

  198. Marin-Garcia J, Goldenthal MJ. Mitochondrial cardiomyopathy: molecular and biochemical analysis. Pediatr Cardiol. 1997;18:251–60.

    Article  CAS  PubMed  Google Scholar 

  199. Thorburn DR, Sugiana C, Salemi R, et al. Biochemical and molecular diagnosis of mitochondrial respiratory chain disorders. Biochim Biophys Acta. 1659;2004:121–8.

    Google Scholar 

  200. Cochat P. Combined liver kidney transplantation in primary hyperoxaluria type 1. Eur J Pediatr. 1999;158(Suppl 2):S75–80.

    Article  PubMed  Google Scholar 

  201. Hayflick S, Rowe S, Kavanaugh-McHugh A, et al. Acute infantile cardiomyopathy as a presenting feature of mucoploysaccharidosis. J Pediatr. 1992;12:269–72.

    Article  Google Scholar 

  202. Gilbert-Barness E. Cardiovascular involvement in metabolic diseases. Pediatr Pathol Mol Med. 2002;21:93–136.

    Article  PubMed  Google Scholar 

  203. Pernot C, Loth P, Gautier M. The myocardiopathies of glycogenosis. Arch Mal Coeur Vaiss. 1978;71:428–36.

    CAS  PubMed  Google Scholar 

  204. Van Noort G, Straks W, Van Diggelen OP, Hennekam RC. A congenital variant of glycogenosis type IV. Pediatr Pathol. 1993;13:685–98.

    Article  PubMed  Google Scholar 

  205. Miranda AF, Nette G, Hartlage P, et al. Phosphorylase isoenzymes in normal and myophosphorylase deficient human heart. Neurology. 1979;29:1538–41.

    Article  CAS  PubMed  Google Scholar 

  206. Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation and 3-methylglutaconic aciduria. J Pediatr. 1991;119:738–47.

    Article  CAS  PubMed  Google Scholar 

  207. Gehrmann J, Sohlbach K, Linnebank M, et al. Cardiomyopathy in congenital disorders of glycosylation. Cardiol Young. 2003;13:345–51.

    Article  PubMed  Google Scholar 

  208. Nadas AS, Ellison RC. Cardiac tumors in infancy. Am J Cardiol. 1968;21:363–6.

    Article  CAS  PubMed  Google Scholar 

  209. Burke A, Virmani R. Classification and incidence of cardiac tumors. In: Burke A, Virmani R, editors. Atlas of tumor pathology, 3rd series, Fascicle 16, Tumors of the heart and great vessels. Washington, DC: AFIP; 1995. p. 1–11.

    Google Scholar 

  210. Isaacs H Jr. Fetal and neonatal cardiac tumors. Pediatr Cardiol. 2004;25:252–73.

    Article  PubMed  Google Scholar 

  211. Sallee D, Spector ML, van Heeckeren DW, Patel CR. Primary pediatric cardiac tumors: a 17 year experience. Cardiol Young. 1999;9:155–62.

    Article  CAS  PubMed  Google Scholar 

  212. Yinon Y, Chitayat D, Blaser S, et al. Fetal cardiac tumors: a single-center experience of 40 cases. Prenat Diagn. 2010;30:941–9.

    Article  PubMed  Google Scholar 

  213. Beghetti M, Gow RM, Haney I, et al. Pediatric benign primary cardiac tumours: a 15-year review. Am Heart J. 1997;134:1107–14.

    Article  CAS  PubMed  Google Scholar 

  214. Isaacs H. Perinatal (fetal and neonatal) tuberous sclerosis: a review. Am J Perinatol. 2009;26:755–60.

    Article  PubMed  Google Scholar 

  215. Tworetzky W, McElhinney DB, Margossian R, et al. Association between cardiac tumors and tuberous sclerosis in the fetus and neonate. Am J Cardiol. 2003;92:487–9.

    Article  PubMed  Google Scholar 

  216. Burke AP, Rosada-de-Christenson M, Templeton PA, et al. Cardiac fibroma: clinicopathologic correlates and surgical treatment. J Thorac Cardiovasc Surg. 1994;108:862–70.

    Article  CAS  PubMed  Google Scholar 

  217. Heerema-McKenney A, Harrison MR, Bratton B, et al. Congenital teratoma: a clinicopathologic study of 22 fetal and neonatal tumors. Am J Surg Pathol. 2005;29:29–38.

    Article  PubMed  Google Scholar 

  218. Amano J, Kono T, Wada Y, et al. Cardiac myxoma: its origin and tumor characteristics. Ann Thorac Cardiovasc Surg. 2003;9:215–21.

    PubMed  Google Scholar 

  219. Watanabe M, Abe M, Ogawa S. A case of neonatal cardiac tamponade associated with benign hemangioma. J Nippon Med School. 2010;77:2–3.

    Article  Google Scholar 

  220. Daubeney PE, Ogilvie BC, Moore IE, Webber SA. Intrapericardial lymphangioma presenting as neonatal cardiac tamponade. Pediatr Cardiol. 1996;17:129–31.

    Article  CAS  PubMed  Google Scholar 

  221. Kobayashi D, Delius RE, Debelenko LV, Aggarwal S. Cardiac juvenile xanthogranuloma in an infant presenting with pericardial effusion. Congenit Heart Dis. 2013;8:E106–10.

    Article  PubMed  Google Scholar 

  222. Burke A, Virmani R. Pediatric heart tumors. Cardiovasc Pathol. 2008;17:193–8.

    Article  PubMed  Google Scholar 

  223. Sekar KC. Iatrogenic complications in the neonatal intensive care unit. J Perinatol. 2010;30:S51–6.

    Article  PubMed  Google Scholar 

  224. ter Heide H, Strander-Stumpel CT, Pals G, et al. Neonatal Marfan syndrome: clinical report and review of the literature. Clin Dysmorphol. 2005;14:81–4.

    Article  PubMed  Google Scholar 

  225. Luschner TF, Lie JT, Stanson AW, et al. Arterial fibromuscular dysplasia. Mayo Clin Proc. 1987;69:931–52.

    Article  Google Scholar 

  226. Price RA, Vawter G. Arterial fibromuscular dysplasia in infancy and childhood. Arch Path. 1972;93:419–26.

    CAS  PubMed  Google Scholar 

  227. Arey JB, Segal R. Fibromuscular dysplasia of the intramyocardial coronary arteries. Pediatr Pathol. 1987;7:97–103.

    CAS  PubMed  Google Scholar 

  228. Imamura M, Yokoyama S, Kikuchi K. Coronary fibromuscular dysplasia presenting as sudden infant death. Arch Pathol Lab Med. 1997;121:159–61.

    CAS  PubMed  Google Scholar 

  229. Billingham ME. Normal heart. In: Sternberg SS, editor. Histology for pathologists. New York: Raven Press; 1992. p. 215–31.

    Google Scholar 

  230. Maron BJ, Wolfson JK, Epstein SE, et al. Intramural (“small-vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;8:545–7.

    Article  CAS  PubMed  Google Scholar 

  231. Burke AP, Ribe JK, Ak B, et al. Hamartoma of mature cardiac myocytes. Hum Pathol. 1998;29:904–9.

    Article  CAS  PubMed  Google Scholar 

  232. Fortuin NJ, Morrow AG, Roberts WC. Late vascular manifestations of the rubella syndrome. Am J. Med. 1971;51:134–40.

    Article  CAS  PubMed  Google Scholar 

  233. Greene JF, Fitzwater JE, Burgess J. Arterial lesions associated with neurofibromatosis. Am J Clin Pathol. 1974;62:481–7.

    Article  PubMed  Google Scholar 

  234. Rolfes DB, Towbin R, Bove KE. Vascular dysplasia in a child with tuberous sclerosis. Pediatr Pathol. 1985;3:359–73.

    Article  CAS  PubMed  Google Scholar 

  235. Marrott PK, Newcombe KD, Becroft DM, Friedlander DH. Idiopathic infantile arterial calcification with survival to adult life. Pediatr Cardiol. 1984;5:119–22.

    Article  CAS  PubMed  Google Scholar 

  236. Morton R. Idiopathic arterial calcification in infancy. Histopathology. 1978;2:423–32.

    Article  CAS  PubMed  Google Scholar 

  237. Farquhar J, Makhseed N, Sargent M, et al. Idiopathic infantile arterial calcification and persistent pulmonary hypertension. Am J Perinatol. 2005;22:121–5.

    Article  PubMed  Google Scholar 

  238. Rutsch F, Ruf N, Vaingankar S, et al. Mutations in ENPP1 are associated with “idiopathic” infantile arterial calcification. Nat Genet. 2003;34:378–81.

    Article  Google Scholar 

  239. Newburger JW, Fulton DR. Kawasaki disease. Curr Opin Pediatr. 2004;16:508–14.

    Article  PubMed  Google Scholar 

  240. Anderson RH, Boyett MR, Dobrzynski H, Moorman AF. The anatomy of the conduction system: implications for the clinical cardiologist. J Cardiovasc Transl Res. 2013;6:187–96.

    Article  PubMed  Google Scholar 

  241. Orlandi A, Hao H, Ferlosio A, et al. Alpha actin isoforms expression in human and rat adult cardiac conduction system. Differentiation. 2009;77:360–8.

    Article  CAS  PubMed  Google Scholar 

  242. James TN. Cardiac conduction system: fetal and postnatal development. Am J Cardiol. 1970;25:213–26.

    Article  CAS  PubMed  Google Scholar 

  243. Feldt RH, DuShane JW, Titus JL. The atrioventricular conduction system in persistent common atrioventricular canal defect. Circulation. 1970;42:437–44.

    Article  CAS  PubMed  Google Scholar 

  244. Lev M, Bharati S. Lesions of the conduction system and their functional significance. Pathol Annual. 1974;9:157–207.

    CAS  Google Scholar 

  245. Ho SY, Esscher E, Anderson RH, Michaelsson M. Anatomy of congenital complete heart block and relation to maternal anti-Ro antibodies. Am J Cardiol. 1986;58:291–4.

    Article  CAS  PubMed  Google Scholar 

  246. Hamaoka A, Shiraishi I, Yamagishi M, Hamaoka K. A neonate with the rupture of mitral chordae tendinae associated with maternal-derived anti-SSA antibody. Eur J Pediatr. 2009;168:741–173.

    Article  PubMed  Google Scholar 

  247. Wever EF, Robles de Medina EO. Sudden death in patients without structural heart disease. J Am Coll Cardiol. 2004;43:1137–44.

    Article  PubMed  Google Scholar 

  248. Antzelevitch C. Molecular biology and cellular mechanisms of Brugada and long QT syndromes in infants and young children. J Electrocardiol. 2003;34:177–81.

    Article  Google Scholar 

  249. Francis J, Sankar V, Nair VK, et al. Catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2005;2:550–4.

    Article  PubMed  Google Scholar 

  250. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:1932–63.

    Article  PubMed  Google Scholar 

  251. Tester DJ, Wong LCH, Chanana P, et al. Cardiac genetic predisposition in sudden infant death syndrome. J Am Coll Cardiol. 2018;71:1217–27.

    Article  PubMed  Google Scholar 

  252. Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.

    Article  CAS  PubMed  Google Scholar 

  253. Tester DJ, Ackerman MJ. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res. 2005;67:388–96.

    Article  CAS  PubMed  Google Scholar 

  254. Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.

    Article  PubMed  Google Scholar 

  255. Van Norstrand DW, Valdivia CR, et al. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation. 2007;116:2253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Cheng J, Van Norstrand DW, Medeiros-Domingo A, et al. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol. 2009;2:667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Tan HL, Hofman N, van Langen IM, van der Wal AC, Wilde AA. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation. 2005;112:207–13.

    Article  PubMed  Google Scholar 

  258. Tester DJ, Dura M, Carturan E, et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm. 2007;4:733–9.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Tester DJ, Tan B-H, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of function mutations in the KCNJ8-encoded Kir6.1 KATP channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4:510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long QT syndrome gene variations in sudden infant death syndrome. Circulation. 2007;115:361–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Ashworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashworth, M.T. (2022). Cardiovascular System. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling's Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-84168-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84168-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84167-6

  • Online ISBN: 978-3-030-84168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics