Skip to main content

Agriculture in Latin America: Recent Advances and Food Demands by 2050

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme IV: Actions

Abstract

This chapter describes the current situation of agriculture in Latin America from the demographic point of view and the current demand for food. Climate change mitigation measures that are being implemented in this region of the world, as well as advances in research that contribute to the increase in agricultural production in Mexico and Latin America are discussed. Advances in ICT-based precision agriculture, studies of the productive potential of crops, phytosanitary alert systems, inspection and risk analysis of import/export agricultural products, and the quality of the seeds and beneficial microorganisms in agriculture, among others, have contributed to the increase in the volume of production in agriculture. The key issue here, is the balance between this increase and the food needs as they projected in the mid-turn future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CEPAL (2020). América Latina y el Caribe: Estimaciones y proyecciones de población. Comisión Económica para América Latina y el Caribe. Naciones Unidas.

    Google Scholar 

  2. Alston, J. M., & Pardey, P.G. (2014). Agriculture in the Global Economy. The Journal of Economic Perspectives 28 (1), 121–146.

    Article  Google Scholar 

  3. Howden, S. M., Soussana, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M. & Meinke, H. (2007), “Adapting Agriculture to Climate Change”, Proceedings of the National Academy of Sciences 104 (50), 691–696

    Article  Google Scholar 

  4. Fischer, G., Shah, M., Tubiello, F. & Van Velhuizen, H. (2005), “Socio-economic and Climate Change Impacts on Agriculture: An Integrated Assessment, 1990-2080”, Philosophical Transactions of the Royal Society B: Biological Sciences 360, (1463), 2067–2083.

    Article  Google Scholar 

  5. Mendelsohn, R. (2009). The Impact of Climate Change on Agriculture in Developing Countries. Journal of Natural Resources Policy Research 1 (1), pp. 5–19.

    Article  Google Scholar 

  6. Lopez, F. A.J. & Hernández C. D. (2016). Climate Change and Agriculture: A Review of the Literature with Emphasis on Latin America. El Trimestre Económico 83(4), 332, 459–496.

    Google Scholar 

  7. Magrin, G., Marengo, J., Boulanger, J., Buckeridge, M., Castellanos, E. & Vicuña, S. (2014), “Central and South America”, In: V. Barros, C. Field, D. Dokken, M. Mastrandrea, K. Mach, T. Bilir & L. White (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press/Cambridge, UK/Nueva York, 1499–1566.

    Google Scholar 

  8. Soria-Ruiz, J., Contreras, M., Piña, J., Torres, H. (2009). Metodología para la evaluación de daños en la agricultura causados por huracanes. INIFAP-CIRSE. Publicación Especial 1, 51p. Mérida, Yuc., México. ISBN: 978-607-425-238-5.

    Google Scholar 

  9. IICA (2019). Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2019-2020./CEPAL, FAO, IICA. – San José, C.R. 144 p.

    Google Scholar 

  10. FAO (2017). El futuro de la Alimentación y la Agricultura, Tendencias y desafíos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Versión resumida. Roma.

    Google Scholar 

  11. Quiroga-Parra, D.J., Torrent-Sellens, J. & Murcia-Zorrilla, C. (2017). Information technology in Latin America, its impact on productivity: A comparative analysis with developed countries. 84 (200), 281–290 (SP) https://doi.org/10.15446/dyna.v84n200.60632

  12. COLPOS (2020). Colegio de Posgraduados - Agroecology for sustainable development. Research theme on local rural and indigenous knowledge. Accessed 23/08/2020: http://www.investigacion.colpospuebla.mx/about-co.html

  13. Hofman, A. (1990). Information and communication technologies and their impact in the economic growth of Latin America. https://doi.org/10.1016/j.telpol.2016.02.002.

  14. Barraclough, S. and Utting, P. (1987). Food Security Trends and Prospects in Latin America. Working Paper #99 - August 1987. (Accessed: 7/20/2020). https://kellogg.nd.edu/sites/default/files/old_files/documents/099_0.pdf.

  15. Espinosa-Cristia, J.F., Feregrino, J. and Isla, P. (2019). Emerging, and old, dilemmas for food security in Latin America. Journal of Public Affairs 19(3): e1999.

    Article  Google Scholar 

  16. Setboonsarng, S., Jun, S. & Lucia, V. (2009). Food safety and ICT traceability systems: Lessons from Japan for developing countries, ADBI Working Paper, No. 139, Asian Development Bank Institute (ADBI), Tokyo. Available at: https://www.adb.org/sites/default/files/publication/155994/adbi-wp139.pdf.

  17. Carolan, M. (2017). Publicising Food: Big Data, Precision Agriculture, and Co-Experimental Techniques of Addition. Sociologia Ruralis 57 (2), 135–154. Available: https://onlinelibrary.wiley.com/doi/epdf/10.1111/soru.12120

  18. Hofman, A., Aravena, C. and Aliaga, V. (2016). Information and communication technologies and their impact in the economic growth of Latin America. Telecommunications Policy 40, 485–501. https://doi.org/10.1016/j.telpol.2016.02.002.

    Article  Google Scholar 

  19. Leach, R. J. (1999). Introduction to Software Engineering. CRC Press. ISBN 0849314453, 9780849314452, p 448.

    Google Scholar 

  20. Sabin, M., Viola, B., Impagliazzo, J., Angles, R., Curiel, M., Leger, P., Murillo, J., Hernán, N., Pow-Sang, J.A. and Trejos, I. (2016). Latin American Perspectives to Internationalize Undergraduate Information Technology Education. https://doi.org/10.1145/3024906.3029847.

  21. Zhang, N., Wang, M. and Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture. Volume 36, Issues 2–3. November, 113–132. https://doi.org/10.1016/S0168-1699(02)00096-0.

  22. INIFAP (2020a). Databases converted into tools for agricultural development (blog: https://www.gob.mx/inifap/articulos/convierten-bases-de-datos-en-herramientas-para-el-desarrollo-del-campo?idiom=es)

  23. INIFAP (2020b). National Modeling and Remote Sensors Laboratory (Laboratorio Nacional de Modelaje y Sensores Remotos). Mexico. https://clima.inifap.gob.mx/lnmysr.

  24. Marquez De La Cruz, S.E. (2020). CapCarb-Huatusco: a computational system to estimate carbon sequestration in a Coffea arabica agro-ecosystems: Case of Huatusco, Veracruz, Mexico. Master’s thesis, Colegio de Postgraduados-Montecillo, Mexico. (SP).

    Google Scholar 

  25. Kamilaris, A., Kartakoullis, A. and Prenafeta-Boldú, F.X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture 143, 23–37, https://doi.org/10.1016/j.compag.2017.09.037

    Article  Google Scholar 

  26. Vinaja, R. (2020) Data Analytics Applications in Latin America and Emerging Economies, Book Review. Journal of Global Information Technology Management, 23:1, 79–81, https://doi.org/10.1080/1097198X.2019.1701728

    Article  Google Scholar 

  27. FAO (2020). Base de datos de requerimientos agroecológicos para el desarrollo de cultivos. http://ecocrop.fao.org/ecocrop/srv/en/home.

  28. Medina G.G., Rumayor, A., Cabañas, B., Luna, M., Ruiz, J., Gallegos, C., Madero, J., Gutiérrez, R., Rubio, S. & Bravo, A. (2003). Potencial productivo de especies agrícolas en el estado de Zacatecas. INIFAP-CIRNOC, Campo Experimental Zacatecas. México. 157 p.

    Google Scholar 

  29. Díaz, G., Guajardo, R., Medina, G., Sánchez, I., Soria-Ruiz, J., Vázquez, J., Quijano, J., Legorreta, F. & Ruiz, A. (2012). Potencial productivo de 50 especies agrícolas de importancia socio-económica en México. INIFAP- CIRGOC. Publicación especial No. 8. ISBN: 978-607-425-766-3.

    Google Scholar 

  30. Yáñez-López R., Vázquez-Ortega, A., Arreguín Centeno, A., Soria-Ruíz, J. and Quijano-Carranza J.A. (2019). Alert system against the fall armyworm Spodoptera frugiperda (J. E. Smith) (Insecta: Lepidoptera: Noctuidae). Revista Mexicana de Ciencias Agrícolas 10(2), 405–16.

    Article  Google Scholar 

  31. Galindo M. M.G., Olvera, L.A. and Contreras, C. (2015). Sistema Nacional de Vigilancia Epidemiológica Fitosanitario. Caso México. In Jaramillo G., J.L. (Ed.). 2015. Memorias Congreso Colombiano de Entomología 42. SOCOLEN, Medellín, Colombia, 177–187.

    Google Scholar 

  32. NAPPO (2020). Northamerican Plant Protection Organization. https://www.nappo.org/spanish/nosotros/introduccion. Accessed: 08/18/2020.

  33. Beltrán-Peña, H., Soria-Ruiz, J., Teliz-Ortiz, D., Ochoa-Martínez, D., Nava-Díaz, C. & Ochoa-Ascencio, S. (2014). Detección satelital y molecular del viroide de la mancha de sol del aguacate (Avocado Sunblotch Viroid, ASBVd). Revista Fitotecnia Mexicana Vol. 37 (1), 21–29.

    Article  Google Scholar 

  34. Frolov A. (2019). Patterns of pest population dynamics and phytosanitary forecast. Plant Protection News, No 3 (2019): 3(101).

    Google Scholar 

  35. Wieser, A., Reuss, F., Niamir, L., Muller, L., O’Hara, R.B. and Pfenninger, M. (2019). Modelling seasonal dynamics, population stability, and pest control in Aedes japonicus japonicus (Diptera: Culicidae). Parasites Vectors 12, 142. https://doi.org/10.1186/s13071-019-3366-2

    Article  Google Scholar 

  36. Hernández-Zul, M. I., Quijano-Carranza, J.A., Yáñez-López, R., Ocampo-Velázquez, R.V., Torres-Pacheco, I., Guevara-González, R.G. & Castro-Ramírez A.E. (2013). Dynamic Simulation Model of Central American Locust Schistocerca piceifrons (Orthoptera: Acrididae). Florida Entomologist 96(4), 1274–1283

    Article  Google Scholar 

  37. Ramírez-Guzmán, M.E. & López-Tirado, Q. (2007). Determinación de metodologías de muestreo y tamaños de muestra en embarques de importación para realizar análisis de laboratorio para granos. https://www.researchgate.net/profile/M_E_Ramirez_Guzman/research. (Accessed: 08/18/2020).

  38. RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

  39. @Risk (2020). Análisis de Riesgo para Excel con simulación Monte Carlo. https://www.palisade-lta.com/productos.asp. (Accessed: 08/18/2020).

  40. Arenas, W.C., Cardozo, C.I. & Baena, M. (2015). Analysis of seed systems in Latin American countries. Acta Agron. 64 (3), 239–245.

    Article  Google Scholar 

  41. Servicio de Información Agroalimentaria y Pesquera (2020). 1306–1315. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenDelegacion.do.

  42. Aguilar-Marcelino, L., Mendoza, P., Al-ani, L., Lopez, M., Gómez, O., Villar-Luna, E. and Reyes-Guerrero, D. (2020). Using molecular techniques applied to beneficial microorganism as biotechnological tools for controlling agricultural plants pathogens and pest. In: Molecular aspects of plant beneficial microbes in agriculture. Vivek Sharma, Richa Salwan, Laith Khalil Tawfeeq Al-Ani (Eds). London, United Kingdom. pp: 333–349.

    Google Scholar 

  43. Heap, I. (2014). Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 70 (9). https://doi.org/10.1002/ps.3696

  44. Al-ani, L., Aguilar-Marcelino, L., Fiorotti, J., Sharma, S., Sharif, M., Furtado, E., Wijayawardene, N. & Herrera-Estrella, A. (2020). Biological control agents and their importance for plant health. In: J. S. Singh & S. Raj Vimal (Eds.), Microbial services in restoration ecology (pp. 13–28). Elsevier.

    Chapter  Google Scholar 

  45. Chun Su, Liu Y, Sun Y, Li Z. (2017). Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. Journal of Biotechnology 245:9–13. https://doi.org/10.1016/j.jbiotec.2017.01.011

    Article  Google Scholar 

  46. Méndez-Santiago, E.W., Gómez-Rodríguez, O., Sánchez-Cruz, R., Folch-Mallol, J.L., Hernández-Velázquez, V.M., Villar-Luna, E., Aguilar-Marcelino, L., Wong-Villarreal, A. (2020). Serratia sp. and endophyte of Mimosa pudica nodules with nematicidal antifungal activity and growth-promoting characteritics. Archives of Microbiology. https://doi.org/10.1007/s00203-020-02051-2.

  47. Wadsworth, J. (1997). Análisis de sistemas de producción animal. Tomo 1: Las bases conceptuales. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, © FAO.

    Google Scholar 

  48. FAO (2015). Estudios de perspectivas mundiales, datos basados en ONU (Accessed at: https://esa.un.org/unpd/wpp).

  49. Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper No. 12-03. Roma.

    Google Scholar 

  50. Medina, G.G., R. Gutiérrez Luna, R., Echavarría Chairez, F., Amador M.D. and Ariel Ruiz Corral, J. (2009). Estimación de la producción de forraje con imágenes de satélite en los pastizales de Zacatecas. Técnica pecuaria en México 47(2):135–144.

    Google Scholar 

  51. Braun, J., M. Braun, M. and Diaz, J (2000). Economía Chilena 1810–1995. EstadÚsticas Históricas. Documento de Trabajo No. 187. Universidad Católica de Chile. ISSN electrónica 0717-7593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soria-Ruiz, J. et al. (2021). Agriculture in Latin America: Recent Advances and Food Demands by 2050. In: Bochtis, D.D., Pearson, S., Lampridi, M., Marinoudi, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme IV: Actions. Springer Optimization and Its Applications, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-030-84156-0_7

Download citation

Publish with us

Policies and ethics