Skip to main content

The Asymptotic Expansion for a Class of Convergent Sequences Defined by Integrals

  • Chapter
  • First Online:
Approximation and Computation in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 180))

  • 802 Accesses

Abstract

We obtain the complete asymptotic expansion of the sequence defined by \(\int _0^1f(x)g(x^n)dx\), where the functions f and g satisfy various conditions. The main result is applied in Sect. 4 to find the complete asymptotic expansion of some classical sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Andrica, On a combinatorial sum (in Romanian). Gazeta Mat. Ser. B 5, 158 (1989)

    MATH  Google Scholar 

  2. D. Andrica, M. Piticari, An extension of the Riemann-Lebesgue lemma and some applications, in Proceedings of International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2004), Thessaloniki, Acta Universitatis Apulensis, vol. 8 (2004), pp. 26–39

    Google Scholar 

  3. D. Andrica, M. Piticari, On a class of sequences defined by using Riemann integral, in Proceedings International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2005), Albac, Acta Universitatis Apulensis, vol. 10 (2005), pp. 381–385

    Google Scholar 

  4. D. Andrica, M. Piticari, On a class of convergent sequences defined by integrals. Gen. Math. 14(2), 43–54 (2006)

    MathSciNet  MATH  Google Scholar 

  5. C. Arzelà, Sulla integratione per serie. Atti. Acc. Lincei. Tome 1, 532–537, 596–599 (1885)

    Google Scholar 

  6. V. Boju, L. Funar, The Math Problems Notebook (Birkhäuser, Boston, 2007)

    MATH  Google Scholar 

  7. W.W. Breckner, On Riemann integrability of the composite functions (in Romanian). Lucrarile Seminarului de Didactica Matematicii 12, 25–38 (1997)

    MathSciNet  Google Scholar 

  8. J.M. Borwein, P.B. Borwein, K. Dilcher, Pi, Euler numbers, and asymptotic expansions. Am. Math. Month. 96(8), 681–687 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Corduneanu, D.-Ş. Marinescu, I. Serdean, On the problem XII.9 in Recreaţii Matematice. Recreaţii Matematice Anul III(2), 23–25 (2001)

    Google Scholar 

  10. N.G. de Bruijin, Asymptotic Methods in Analysis (North-Holland, Amsterdam, 1958)

    Google Scholar 

  11. F. Dumitrel, Problems in Mathematical Analysis (in Romanian) (Editura Scribul, 2002)

    Google Scholar 

  12. J.-P. Grivaux, Solution to problem 11725. Am. Math. Month. 122, 8 (2015)

    Google Scholar 

  13. S. Lang, Analysis I (Addison-Wesley, Boston, 1968)

    MATH  Google Scholar 

  14. J.W. Lewin, A truly elementary approach to the bounded convergence theorem. Am. Math. Month. 93, 395–397 (1986)

    Article  MathSciNet  Google Scholar 

  15. J. Lu, Is the composite function integrable? Am. Math. Month. 106, 763–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Mocanu, A. Sandovici, On the convergence of a sequence generated by an integral. Creative Math. Inform. 14, 31–42 (2005)

    MathSciNet  MATH  Google Scholar 

  17. N. Muşuroia, On the limits of some sequences of integrals. Creative Math. Inform. 14, 43–48 (2005)

    MATH  Google Scholar 

  18. A. Novac, An asymptotic expansion of sequence of integral. Appl. Math. Lett. 24, 1017–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. W.F. Osgood, Non-uniform convergence and the integration of series term by term. Am. Math. Month. 19, 155–190 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Paltanea, A representation of a sequence of integral. Gaz. Mat. Ser. B 11, 419–421 (2003)

    Google Scholar 

  21. T.-L. Rădulescu, V. Rădulescu, T. Andreescu, Problems in Real Analysis: Advanced Calculus on the Real Axis (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  22. M. Safaryan, Problem 11725. Am. Math. Month. 120, 8 (2013)

    Google Scholar 

  23. G. Sireţchi, Mathematical Analysis II. Advanced Problems in Differential and Integral Calculus (in Romanian) (University of Bucharest, Bucharest, 1982)

    Google Scholar 

  24. B.S. Thomson, The bounded convergence theorem. Am. Math. Month. 127, 6 (2020)

    Article  MathSciNet  Google Scholar 

  25. R. Wong, Asymptotic Approximations of Integrals. Classics in Applied Mathematics, vol. 34 (Society for Industrial and Applied Mathematics, Philadelphia, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Andrica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrica, D., Marinescu, D.Ş. (2022). The Asymptotic Expansion for a Class of Convergent Sequences Defined by Integrals. In: Daras, N.J., Rassias, T.M. (eds) Approximation and Computation in Science and Engineering. Springer Optimization and Its Applications, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-84122-5_3

Download citation

Publish with us

Policies and ethics