Skip to main content

Secondary Causes and Contributors to Osteoporosis

  • Chapter
  • First Online:
Osteoporosis
  • 698 Accesses

Abstract

The presentation of a fragility fracture or osteoporosis by DXA should prompt consideration of secondary contributors to bone frailty. Evaluation of osteoporosis should generally include laboratory analysis to rule out hyperparathyroidism, hypovitaminosis D, renal disease, and imbalance of mineral homeostasis. Additionally, a thorough history, physical examination, and review of previous laboratory findings, as well as an astute index of suspicion, can lead to the discovery of modifiable diagnoses. If found and treated, disease states such as multiple myeloma, Cushing’s syndrome, or celiac disease can greatly improve our patients’ outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tannenbaum C, Clark J, Schwartzman K, et al. Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab. 2002;87(10):4431–7.

    Article  CAS  Google Scholar 

  2. Kelepouris N, Harper KD, Gannon F, Kaplan FS, Haddad JG. Severe osteoporosis in men. Ann Intern Med. 1995;123(6):452–60.

    Article  CAS  Google Scholar 

  3. Bogoch ER, Elliot-Gibson V, Wang RY, Josse RG. Secondary causes of osteoporosis in fracture patients. J Orthop Trauma. 2012;26(9):e145–52.

    Article  Google Scholar 

  4. Camacho PM, Petak SM, Binkley N, et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;26(Suppl 1):1–46.

    Article  Google Scholar 

  5. Watts NB, Adler RA, Bilezikian JP, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22.

    Article  CAS  Google Scholar 

  6. Dawson-Hughes B, Mithal A, Bonjour JP, et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int. 2010;21(7):1151–4.

    Article  CAS  Google Scholar 

  7. Migliaccio S, Di Nisio A, Mele C, et al. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019;9(1):20–31.

    Article  Google Scholar 

  8. Johnson JM, Maher JW, DeMaria EJ, Downs RW, Wolfe LG, Kellum JM. The long-term effects of gastric bypass on vitamin D metabolism. Ann Surg. 2006;243(5):701–4; discussion 704–705.

    Article  Google Scholar 

  9. Schafer AL, Weaver CM, Black DM, et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res. 2015;30(8):1377–85.

    Article  CAS  Google Scholar 

  10. Flores L, Osaba MJM, Andreu A, Moize V, Rodriguez L, Vidal J. Calcium and vitamin D supplementation after gastric bypass should be individualized to improve or avoid hyperparathyroidism. Obes Surg. 2010;20(6):738–43.

    Article  Google Scholar 

  11. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  CAS  Google Scholar 

  12. Ryan LE, Ing SW. Idiopathic hypercalciuria and bone health. Curr Osteoporos Rep. 2012;10(4):286–95.

    Article  Google Scholar 

  13. LaCroix AZ, Ott SM, Ichikawa L, Scholes D, Barlow WE. Low-dose hydrochlorothiazide and preservation of bone mineral density in older adults. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;133(7):516–26.

    Article  CAS  Google Scholar 

  14. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. A prospective study of thiazide use and fractures in women. Osteoporos Int. 1997;7(1):79–84.

    Article  CAS  Google Scholar 

  15. Gravallese EM, Goldring S. Inflammation-induced bone loss in the rheumatic diseases. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 9th ed. Hoboken: Wiley-Blackwell; 2019. p. 459–66.

    Google Scholar 

  16. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  Google Scholar 

  17. O’Donnell EK, Raje NS. Myeloma bone disease: pathogenesis and treatment. Clin Adv Hematol Oncol. 2017;15(4):285–95.

    PubMed  Google Scholar 

  18. Lomas OC, Mouhieddine TH, Tahri S, Ghobrial IM. Monoclonal gammopathy of undetermined significance (MGUS): not so asymptomatic after all. Cancers. 2020;12(6):1554.

    Article  CAS  Google Scholar 

  19. Veronese N, Luchini C, Solmi M, Sergi G, Manzato E, Stubbs B. Monoclonal gammopathy of undetermined significance and bone health outcomes: a systematic review and exploratory meta-analysis. J Bone Miner Metab. 2018;36(1):128–32.

    Article  Google Scholar 

  20. Vestergaard P, Lindholm J, Jorgensen JO, et al. Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol. 2002;146(1):51–6.

    Article  CAS  Google Scholar 

  21. Laszkowska M, Mahadev S, Sundstrom J, et al. Systematic review with meta-analysis: the prevalence of coeliac disease in patients with osteoporosis. Aliment Pharmacol Ther. 2018;48(6):590–7.

    Article  CAS  Google Scholar 

  22. Hjelle AM, Apalset E, Mielnik P, Nilsen RM, Lundin KEA, Tell GS. Positive IgA against transglutaminase 2 in patients with distal radius and ankle fractures compared to community-based controls. Scand J Gastroenterol. 2018;53(10–11):1212–6.

    Article  CAS  Google Scholar 

  23. de Bruin IJA, Vranken L, Wyers CE, et al. The prevalence of celiac disease in a fracture liaison service population. Calcif Tissue Int. 2020;107(4):327–34.

    Article  Google Scholar 

  24. Duerksen DR, Lix LM, Johansson H, et al. Fracture risk assessment in celiac disease: a registry-based cohort study. Osteoporos Int. 2021;32(1):93–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryan, L.E., Ing, S.W. (2021). Secondary Causes and Contributors to Osteoporosis. In: Cusano, N.E. (eds) Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-030-83951-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83951-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83950-5

  • Online ISBN: 978-3-030-83951-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics