Skip to main content

Heavy Metals Removal Techniques from Industrial Waste Water

  • Chapter
  • First Online:
Advanced Industrial Wastewater Treatment and Reclamation of Water

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Regarded as pollutants heavy metals like Arsenic (As), Hg (Mercury), Zn (Zinc), Cd (Cadmium), Thallium (Tl) and Pb (Lead) not only pose a serious threat on water ecosystem but also on human health owing to their highly toxic, non-biodegradable, and carcinogenic behavior. With industrial advancement it has become one of the foremost sources of heavy metals instigating it into different component of ecosystem air, water and soil. Various techniques are currently available which are used for the treatment of discharge of various industries often laden with noxious metal particles. This chapter discusses in brief current wastewater treatment procedures for removal of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CNTs:

Carbon Nanotubes

EDTA:

Ethylenediamine Tetra acetic acid

IP:

Interfacial polymerization

NTA:

Nitrilotriacetic acid

NF:

Nanofiltration

MF:

Microfiltre

PAN:

Polyacrylonitrile

PES:

Polyethersulfone

PP:

Polypropylene

PVDF:

Polyvinylidene fluoride

RO:

Reverse Osmosis

UF:

Ultra-filtration

References

  • Abdel-Halim SH, Shehata AM, El-Shahat MF (2003) Removal of lead ions from industrial waste water by different types of natural materials. Water Res 37(7):1678–1683

    Article  CAS  Google Scholar 

  • Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167(1–3):482–488

    Article  CAS  Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of Heavy Metals from Industrial Wastewaters: A Review. Chem Bio Eng Rev 1:37–59

    Google Scholar 

  • Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: posttreatment by high quality limestone. Bioresour Technol 99:1578–1602

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Article  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Basaldella EI, Patrica GV, Lucolano F, Caputo D (2007) Chromium removal from water using LTA zeolites: effect of pH. J Colloid Interf Sci 313:574–578

    Google Scholar 

  • Chong MN, JÄ«n B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  Google Scholar 

  • Dabrowski A, Hubicki Z, PodkoÅ›cielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106

    Article  ADS  CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manag 12(3):188–209

    Google Scholar 

  • Dionisi D (2014) Potential and limits of biodegradation processes for the removal of organic xenobiotics from wastewaters. Chem Bio Eng Rev 1(2):67–82

    Google Scholar 

  • Ferreira SL, de Brito CF, Dantas AF, Lopo de Araújo NM, Costa AC (1999) Nickel determination in saline matrices by ICP-AES after sorption on Amberlite XAD-2 loaded with PAN. Talanta 48(5):1173–1177

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 9(3):407–418

    Article  CAS  Google Scholar 

  • Galla U, Jüttner K, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochemical Acta 45:2575–2594

    Article  Google Scholar 

  • Gode F, Pehlivan E (2003) A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. J Hazard Mater 100(1–3):231–243

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2013) in Environmental water, Ali VKG (ed). Elsevier, Amsterdam. 1, pp. 12-28

    Google Scholar 

  • Hahladakis J, Smaragdaki E, Vasilaki G, Gidarakos E (2013) Use of Sediment Quality Guidelines and pollution indicators for the assessment of heavy metal and PAH contamination in Greek surficial sea and lake sediments. Environ Monit Assess 185(3):2843–2853

    Article  CAS  Google Scholar 

  • Kabbashi NA, Atieh MA, Al-Mamun A, Mirghami ME, Alam MD, Yahya N (2009) Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J Environ Sci (china) 21(4):539–544

    Article  CAS  Google Scholar 

  • Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56(2):141–147

    Article  ADS  CAS  Google Scholar 

  • Koyuncu I, Sengur R, Turken T, Guclu S, Pasaoglu ME (2015) in Advances in membrane technologies for water treatment, Basile A, Rastogi, ACK (eds). Woodhead Publishing, Cambridge, pp 83–128

    Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico-chemical treatment technique for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Wang Z, Xia Y (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177(1–3):876–880

    Article  CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  • Mansoorian HJ, Mahvi AH, Jafari AJ, Amin MM, Rajabizadeh A, Khanjani N (2014) Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzyme Microb Technol 52(6–7):352–357

    Google Scholar 

  • Merzouk B, Yakoubi M, Kone M, Leclerc JP (2011) Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination 275(1):181–186

    Article  CAS  Google Scholar 

  • Mirbagherp SA, Hosseini SN (2004) Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination 171:85–93

    Article  CAS  Google Scholar 

  • Moufliha M, Aklila A, Sebti S (2005) Removal of lead from aqueous solutions by activated phosphate. J Hazard Mater B119:183–188

    Article  CAS  Google Scholar 

  • Nah IW, Hwang KY, Jeon C, Choi HB (2006) Removal of Pb ion from water by magnetically modified zeolite. Miner Eng 19(14):1452–1455

    Article  CAS  Google Scholar 

  • Pan BC, Zhang QR, Zhang WM, Pana BJ, Dua W, Lvb L, Zhanga QJ, Xua ZW, Zhang QX (2007) Highly effective removal of heavy metals by polymer-based zirconium phosphate. J Colloidal Interf Sci 310(1):141–198

    Google Scholar 

  • Rengaraj S, Yeon KH, Moon SH (2001) Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater 87(1–3):273–287

    Article  CAS  Google Scholar 

  • Singh R (2015) in Membrane technology and engineering for water purification, 2nd ed, Butterworth-Heinemann, Oxford Ch. 3, pp 179–281

    Google Scholar 

  • Smith L (1995) Contaminants and remedial options at selected metal-contaminated sites. Technical resource report, Battelle, Columbus, OH (United States)

    Google Scholar 

  • Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF (2001) Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2. Bioresour Technol 78(2):203–208

    Article  CAS  Google Scholar 

  • Tünay O (2003) Developments in the application of chemical technologies to wastewater treatment. Water Sci Technol 48(11–12):43–52

    PubMed  Google Scholar 

  • Vengris T, Binkiene R, Sveikauskaite A (2001) Nickel, copper, and zinc removal from wastewater by a modified clay sorbent. Appl Clay Sci 18:183–190

    Article  CAS  Google Scholar 

  • Wang LK, Vaccari DA, Li Y, Shammas NK (2004) Chemical precipitation. In Wang LK, Hung YT, Shammas NK (eds) Physicochemical treatment processes, vol. 3. HumanaWiley P. E, Trent, J. D. (2016). Clarification of algae-laden water using electrochemical processes. Water Sci Technol Water Supply 16(2):314–323

    Google Scholar 

  • Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper. J Hazard Mater 80(1–3):33–42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimmy Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N., Chattopadhyay, J., Yashi, A., Rathore, T. (2022). Heavy Metals Removal Techniques from Industrial Waste Water. In: Roy, S., Garg, A., Garg, S., Tran, T.A. (eds) Advanced Industrial Wastewater Treatment and Reclamation of Water. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-83811-9_5

Download citation

Publish with us

Policies and ethics