Skip to main content

Surfactant Biodegradation

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials
  • 114 Accesses

Abstract

Although surfactants are being used extensively in detergents, food, pharmaceuticals, and cosmetics and in industries and various other sectors due to their diverse functions, they also play a critical role in environmental contamination. For this reason, efforts must be made to address the biodegradation of surfactants in the environment. This chapter presents an overview of the degradation of surfactants and discusses in detail the impact of surfactants on the environment and the types and mechanisms of surfactant biodegradation. The factors influencing the biodegradation of surfactants are briefly discussed, while an assessment of the biodegradability of surfactants is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AE:

Fatty acid polyoxyethylene ester

AEO :

Aliphatic alcohol polyoxyethylene ether

AES :

Alcohol ether sulphate

AOPs :

Advanced oxidation processes

APEO:

Alkyl phenol polyoxyethylene ether

AS :

Alkyl sulfonate

BOD :

Biological oxygen demand

CO2 :

Carbon dioxide

COD :

Chemical oxygen demand

DO :

Dissolved oxygen

DOC :

Dissolved Organic Carbon

H2O2 :

Hydrogen peroxide

LAS :

Linear alkylbenzene sulfonate

NPEOn :

Nonylphenol polyoxyethylene ether

O3 :

Ozone

OPEOn:

Octylphenol polyoxyethylene ether

QACs :

Quaternary ammonium compounds

SDS :

Sodium dodecyl sulphate

SPC :

Sulfophenyl carboxylic acids

SPE :

Solid-phase extraction

References

  1. Kurrey R, Mahilang M, Deb MK, Shrivas K (2019) Analytical approach on surface active agents in the environment and challenges. Trends in Environmental Analytical Chemistry 21:e00061

    Article  CAS  Google Scholar 

  2. Palmer M, Hatley H (2018) The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review. Water Research 147:60–72

    Article  CAS  Google Scholar 

  3. Tadros TF (2017) Polymeric Surfactants. De Gruyter

    Book  Google Scholar 

  4. Polarz S, Landsmann S, Klaiber A (2014) Hybrid surfactant systems with inorganic constituents. Angewandte Chemie - International Edition 53(4):946–954

    Article  CAS  Google Scholar 

  5. Foley P, Kermanshahi Pour A, Beach ES, Zimmerman JB (2012) Derivation and synthesis of renewable surfactants. Chemical Society Reviews 41(4):1499–1518

    Article  CAS  Google Scholar 

  6. Bhadani A, Kafle A, Ogura T, et al (2020) Current perspective of sustainable surfactants based on renewable building blocks. Current Opinion in Colloid and Interface Science 45:124–135

    Article  CAS  Google Scholar 

  7. Badmus SO, Amusa HK, Oyehan TA, Saleh TA (2021) Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environmental Science and Pollution Research 28(44):62085–62104

    Article  CAS  Google Scholar 

  8. Cierniak D, Woźniak-Karczewska M, Parus A, et al (2020) How to accurately assess surfactant biodegradation-impact of sorption on the validity of results. Applied Microbiology and Biotechnology 104(1):1–12

    Article  CAS  Google Scholar 

  9. Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology 97(6):2327–2339

    Article  Google Scholar 

  10. Chrzanowski Ł, Dziadas M, Ławniczak Ł, et al (2012) Biodegradation of rhamnolipids in liquid cultures: Effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresource Technology 111:328–335

    Article  CAS  Google Scholar 

  11. Bautista-Toledo MI, Rivera-Utrilla J, Méndez-Díaz JD, et al (2014) Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. Journal of Colloid and Interface Science 418:113–119

    Article  CAS  Google Scholar 

  12. Bandala ER, Peláez MA, Salgado MJ, Torres L (2008) Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes. Journal of Hazardous Materials 151(2–3):578–584

    Article  CAS  Google Scholar 

  13. Ono E, Tokumura M, Kawase Y (2012) Photo-Fenton degradation of non-ionic surfactant and its mixture with cationic or anionic surfactant. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 47(8):1087–1095

    CAS  Google Scholar 

  14. Ogawa T, Kawase Y (2021) Effect of solution pH on removal of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from model wastewater using nanoscale zero-valent iron (nZVI). Journal of Environmental Chemical Engineering 9(5):105928

    Article  CAS  Google Scholar 

  15. Dehghani MH, Najafpoor AA, Azam K (2010) Using sonochemical reactor for degradation of LAS from effluent of wastewater treatment plant. Desalination 250(1):82–86

    Article  CAS  Google Scholar 

  16. Eng YY, Sharma VK, Ray AK (2012) Degradation of anionic and cationic surfactants in a monolithic swirl-flow photoreactor. Separation and Purification Technology 92:43–49

    Article  CAS  Google Scholar 

  17. Panizza M, Delucchi M, Cerisola G (2005) Electrochemical degradation of anionic surfactants. Journal of Applied Electrochemistry 35(4):357–361

    Article  CAS  Google Scholar 

  18. Oya M, Hisano N (2009) Decreases in surface activities and aquatic toxicities of linear Alkylbenzene Sulfonate and alcohol Ethoxylates during biodegradation. Journal of Oleo Science 59(1):31–39

    Article  Google Scholar 

  19. Merrettig-Bruns U, Jelen E (2009) Anaerobic biodegradation of detergent surfactants. Materials 2(1):181–206

    CAS  Google Scholar 

  20. Bondi CAM, Marks JL, Wroblewski LB, et al (2015) Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environmental Health Insights 9:27–32

    Article  Google Scholar 

  21. Sarioglu OF, Tamer YT, Ozkan AD, et al (2013) Fourier transform infrared spectroscopy as a novel approach for analyzing the biochemical effects of anionic surfactants on a surfactant-degrading arcobacter butzleri strain. Applied Spectroscopy 67(4):470–475

    Article  CAS  Google Scholar 

  22. Marinho G, Reinaldo Cavalcante F, Silveira RB, et al (2019) Surfactant biodegradation in batch reactors with aspergillus Niger AN400. International Journal of Environment and Waste Management 24(1):81–92

    Article  CAS  Google Scholar 

  23. Susmi TS, Rebello S, Jisha MS, Sherief PM (2010) Toxic Effects of Sodium Dodecyl Sulphate on Grass Carp Ctenopharyngodon idella. Fishery technology 47(2):157–162

    Google Scholar 

  24. Olkowska E, Ruman M, Polkowska Ż (2014) Occurrence of Surface Active Agents in the Environment. Journal of Analytical Methods in Chemistry 2014:1–15

    Article  Google Scholar 

  25. Koparal AS, Önder E, Öǧütveren ÜB (2006) Removal of linear alkylbenzene sulfonate from a model solution by continuous electrochemical oxidation. Desalination 197(1–3):262–272

    Article  CAS  Google Scholar 

  26. Wibbertmann A, Mangelsdorf I, Gamon K, Sedlak R (2011) Toxicological properties and risk assessment of the anionic surfactants category: Alkyl sulfates, primary alkane sulfonates, and α-olefin sulfonates. Ecotoxicology and Environmental Safety 74(5):1089–1106

    Article  CAS  Google Scholar 

  27. Rebello S, Asok AK, Mundayoor S, Jisha MS (2014) Surfactants: Toxicity, remediation and green surfactants. Environmental Chemistry Letters 12(2):275–287

    Article  CAS  Google Scholar 

  28. Marrakchi S, Maibach HI (2006) Sodium lauryl sulfate-induced irritation in the human face: Regional and age-related differences. Skin Pharmacology and Physiology 19(3):177–180

    Article  CAS  Google Scholar 

  29. Borghi CC, Fabbri M, Fiorini M, et al (2011) Magnetic removal of surfactants from wastewater using micrometric iron oxide powders. Separation and Purification Technology 83(1):180–188

    Article  Google Scholar 

  30. Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International 32(3):417–431

    Article  CAS  Google Scholar 

  31. Ławniczak Ł, Marecik R (2019) Comparison of metalworking fluids biodegradation efficiency by autochthonous and environmental communities. Journal of Environmental Management 232:625–635

    Article  Google Scholar 

  32. Lamichhane S, Bal Krishna KC, Sarukkalige R (2017) Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management 199:46–61

    Article  CAS  Google Scholar 

  33. McFarlin KM, Perkins MJ, Field JA, Leigh MB (2018) Biodegradation of crude oil and Corexit 9500 in Arctic seawater. Frontiers in Microbiology 9(AUG)

    Google Scholar 

  34. Ivanković T, Hrenović J (2010) Surfactants in the environment. Arhiv za Higijenu Rada i Toksikologiju 61(1):95–110

    Article  Google Scholar 

  35. Pereira LC, de Souza AO, Bernardes MFF, et al (2015) A perspective on the potential risks of emerging contaminants to human and environmental health. Environmental Science and Pollution Research 22(18):13800–13823

    Article  CAS  Google Scholar 

  36. Gheorghe S, Lucaciu I, Paun I, et al (2013) Ecotoxicological Behavior of some Cationic and Amphoteric Surfactants (Biodegradation, Toxicity and Risk Assessment). In: Biodegradation - Life of Science. InTech

    Google Scholar 

  37. Atashgahi S, Sánchez-Andrea I, Heipieper HJ, et al (2018) Prospects for harnessing biocide resistance for bioremediation and detoxification. Science 360(6390):743–746

    Article  CAS  Google Scholar 

  38. Lara-Martín PA, González-Mazo E, Brownawell BJ (2012) Environmental analysis of alcohol ethoxylates and nonylphenol ethoxylate metabolites by ultra-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 402(7):2359–2368

    Article  Google Scholar 

  39. Traverso-Soto JM, González-Mazo E, Lara-Martín PA (2012) Analysis of Surfactants in Environmental Samples by Chromatographic Techniques. In: Chromatography - The Most Versatile Method of Chemical Analysis. InTech

    Google Scholar 

  40. Nasiri M, Ahmadzadeh H, Amiri A (2020) Sample preparation and extraction methods for pesticides in aquatic environments: A review. TrAC - Trends in Analytical Chemistry 123:115772

    Article  CAS  Google Scholar 

  41. Gao D, Li Z, Guan J, et al (2014) Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters. Chemosphere 97:130–134

    Article  CAS  Google Scholar 

  42. Bazel YR, Antal IP, Lavra VM, Kormosh ZA (2014) Methods for the determination of anionic surfactants. Journal of Analytical Chemistry 69(3):211–236

    Article  CAS  Google Scholar 

  43. Ma Q, Zhang Y, Zhai J, et al (2019) Characterization and analysis of non-ionic surfactants by supercritical fluid chromatography combined with ion mobility spectrometry-mass spectrometry. Analytical and Bioanalytical Chemistry 411(13):2759–2765

    Article  CAS  Google Scholar 

  44. Duarte ICS, de França P, Okada DY, et al (2015) Anaerobic degradation of anionic surfactants by indigenous microorganisms from sediments of a tropical polluted river in brazil. Revista de Biologia Tropical 63(1):295–302

    Article  Google Scholar 

  45. Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta - Biomembranes 1508(1–2):235–251

    Article  CAS  Google Scholar 

  46. Ellis AJ, Hales SG, Ur-Rehman NGA, White GF (2002) Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate. Applied and Environmental Microbiology 68(1):31–36

    Article  CAS  Google Scholar 

  47. Danial WH, Chutia A, Majid ZA, et al (2015) Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system. In: AIP Conference Proceedings. p 020020

    Google Scholar 

  48. Danial WH, Norhisham NA, Noorden AFA, Majid ZA (2022) Facile electrochemical synthesis of triangle-shaped graphene nanoflakes and graphene quantum dots via surfactant-assisted and defect-induced mechanism. Journal of Applied Science and Engineering (Taiwan) 25(3):495–503

    Google Scholar 

  49. Yeldho D, Rebello S, Jisha MS (2011) Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7. Bulletin of Environmental Contamination and Toxicology 86(1):110–113

    Article  CAS  Google Scholar 

  50. He X, Guvench O, MacKerell AD, Klein ML (2010) Atomistic simulation study of linear alkylbenzene sulfonates at the water/air interface. Journal of Physical Chemistry B 114(30):9787–9794

    Article  CAS  Google Scholar 

  51. Khleifat KM (2006) Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme and Microbial Technology 39(5):1030–1035

    Article  CAS  Google Scholar 

  52. Abboud MM, Khleifat KM, Batarseh M, et al (2007) Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology 41(4):432–439

    Article  CAS  Google Scholar 

  53. Macedo TZ, Okada DY, Delforno TP, et al (2015) The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection. Bioprocess and Biosystems Engineering 38(10):1835–1844

    Article  CAS  Google Scholar 

  54. Asok AK, Jisha MS (2012) Biodegradation of the anionic surfactant linear alkylbenzene sulfonate (LAS) by autochthonous pseudomonas sp. Water, Air, and Soil Pollution 223(8):5039–5048

    Article  CAS  Google Scholar 

  55. Schowanek D, David H, Francaviglia R, et al (2007) Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil. Regulatory Toxicology and Pharmacology 49(3):245–259

    Article  CAS  Google Scholar 

  56. Tezel U, Pierson JA, Pavlostathis SG (2006) Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Research 40(19):3660–3668

    Article  CAS  Google Scholar 

  57. Ruan T, Song S, Wang T, et al (2014) Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China. Environmental Science and Technology 48(8):4289–4297

    Article  CAS  Google Scholar 

  58. Chen Y, Geurts M, Sjollema SB, et al (2014) Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: How test design affects bioavailability and effect concentrations. Environmental Toxicology and Chemistry 33(3):606–615

    Article  CAS  Google Scholar 

  59. Kaczerewska O, Martins R, Figueiredo J, et al (2020) Environmental behaviour and ecotoxicity of cationic surfactants towards marine organisms. Journal of Hazardous Materials 392:122299

    Article  CAS  Google Scholar 

  60. Khan AH, Topp E, Scott A, et al (2015) Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge. Journal of Hazardous Materials 299:595–602

    Article  CAS  Google Scholar 

  61. Zhao X, Chen L, Ma H, et al (2020) Effective removal of polymer quaternary ammonium salt by biodegradation and a subsequent Fenton oxidation process. Ecotoxicology and Environmental Safety 188:109919

    Article  CAS  Google Scholar 

  62. Takenaka S, Tonoki T, Taira K, et al (2007) Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Applied and Environmental Microbiology 73(6):1799–1802

    Article  Google Scholar 

  63. Kleijwegt RJT, Winkenwerder W, Baan W, van der Schaaf J (2022) Degradation kinetics and solvent effects of various long-chain quaternary ammonium salts. International Journal of Chemical Kinetics 54(1):16–27

    Article  CAS  Google Scholar 

  64. Menzies JZ, McDonough K, McAvoy D, Federle TW (2017) Biodegradation of nonionic and anionic surfactants in domestic wastewater under simulated sewer conditions. Biodegradation 28(1):1–14

    Article  CAS  Google Scholar 

  65. Lin YW, Yang CC, Tuan NN, Huang SL (2016) Diversity of octylphenol polyethoxylate-degrading bacteria: With a special reference to Brevibacterium sp. TX4. International Biodeterioration and Biodegradation 115:55–63

    Article  CAS  Google Scholar 

  66. Corvini PFX, Schäffer A, Schlosser D (2006) Microbial degradation of nonylphenol and other alkylphenols - Our evolving view. Applied Microbiology and Biotechnology 72(2):223–243

    Article  CAS  Google Scholar 

  67. Wu Q, Zhao L, Song R, Ma A (2019) Research progress of surfactant biodegradation. IOP Conference Series: Earth and Environmental Science 227(5)

    Google Scholar 

  68. Porter AW, Campbell BR, Kolvenbach BA, et al (2012) Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram. Applied Microbiology and Biotechnology 94(1):261–272

    Article  CAS  Google Scholar 

  69. Traverso-Soto JM, Rojas-Ojeda P, Sanz JL, et al (2016) Anaerobic degradation of alcohol ethoxylates and polyethylene glycols in marine sediments. Science of the Total Environment 544:118–124

    Article  CAS  Google Scholar 

  70. Obradors N, Aguilar J (1991) Efficient biodegradation of high-molecular- weight polyethylene glycols by pure cultures of Pseudomonas Stutzeri Efficient Biodegradation of High-Molecular-Weight Polyethylene Glycols by Pure Cultures of Pseudomonas stutzeri. Applied and Environmental Microbiology 57(8):2383–2388

    Article  CAS  Google Scholar 

  71. Sparham C, Rehman N, Melling J, et al (2008) Biodegradability of highly ethoxylated nonionic surfactants: Determination of intermediates and pathways of biodegradation. Environmental Toxicology and Chemistry 27(5):1069–1076

    Article  CAS  Google Scholar 

  72. Aryal M, Liakopoulou-Kyriakides M (2013) Biodegradation and kinetics of phenanthrene and pyrene in the presence of nonionic surfactants by arthrobacter strain Sphe3. Water, Air, and Soil Pollution 224(2):1426

    Article  Google Scholar 

  73. Bashir A, Sharifi Haddad A, Rafati R (2021) A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: Analyses of key influencing factors. Pet Sci. https://doi.org/10.1016/j.petsci.2021.11.021

  74. Durkee JB (2006) Management of Industrial Cleaning Technology and Processes. Elsevier

    Google Scholar 

  75. Singh SK, Bajpai M, Tyagi VK (2006) Amine Oxides: A Review. Journal of Oleo Science 55(3):99–119

    Article  CAS  Google Scholar 

  76. Ríos F, Lechuga M, Fernández-Arteaga A, et al (2017) Anaerobic digestion of amine-oxide-based surfactants: biodegradation kinetics and inhibitory effects. Biodegradation 28(4):303–312

    Article  Google Scholar 

  77. Madsen T, Boyd HB, Nylén D, et al (2001) Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products. Environmental Project 615(615):1–35

    Google Scholar 

  78. Martins PC, Martins VG (2018) Biosurfactant production from industrial wastes with potential remove of insoluble paint. International Biodeterioration and Biodegradation 127:10–16

    Article  CAS  Google Scholar 

  79. Santos DKF, Rufino RD, Luna JM, et al (2016) Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 17(3):401

    Article  Google Scholar 

  80. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances 25(1):99–121

    Article  CAS  Google Scholar 

  81. Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in Microbiology 6(APR)

    Google Scholar 

  82. Bezza FA, Nkhalambayausi Chirwa EM (2015) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Safety and Environmental Protection 98:354–364

    Article  CAS  Google Scholar 

  83. Sarubbo LA, Sarubbo LA, Maria da Gloria CS, Durval IJ, et al (2022) Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochemical Engineering Journal:108377

    Google Scholar 

  84. Jimoh AA, Lin J (2019) Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety 184:109607

    Article  CAS  Google Scholar 

  85. Ahn C, Morya VK, Kim EK (2016) Tuning surface-active properties of bio-surfactant sophorolipids by varying fatty-acid chain lengths. Korean Journal of Chemical Engineering 33(7):2127–2133

    Article  CAS  Google Scholar 

  86. Ambaye TG, Vaccari M, Prasad S, Rtimi S (2021) Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environmental Technology and Innovation 24:102090

    Article  CAS  Google Scholar 

  87. Nitschke M, Costa SGVAO, Contiero J (2010) Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Applied Biochemistry and Biotechnology 160(7):2066–2074

    Article  CAS  Google Scholar 

  88. Hashim MA, Kulandai J, Hassan RS (1992) Biodegradability of branched alkylbenzene sulphonates. Journal of Chemical Technology & Biotechnology 54(3):207–214

    Article  CAS  Google Scholar 

  89. Cheng Z, Wei Y, Zhang Q, et al (2018) Enhancement of surfactant biodegradation with an anaerobic membrane bioreactor by introducing microaeration. Chemosphere 208:343–351

    Article  CAS  Google Scholar 

  90. Bergero MF, Lucchesi GI (2015) Immobilization of Pseudomonas putida A (ATCC 12633) cells: A promising tool for effective degradation of quaternary ammonium compounds in industrial effluents. International Biodeterioration and Biodegradation 100:38–43

    Article  CAS  Google Scholar 

  91. Fedeila M, Hachaïchi-Sadouk Z, Bautista LF, et al (2018) Biodegradation of anionic surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens strains isolated from industrial wastewater. Ecotoxicology and Environmental Safety 163:629–635

    Article  CAS  Google Scholar 

  92. Paulo AMS, Aydin R, Dimitrov MR, et al (2017) Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Applied Microbiology and Biotechnology 101(12):5163–5173

    Article  CAS  Google Scholar 

  93. Barra Caracciolo A, Ademollo N, Cardoni M, et al (2019) Assessment of biodegradation of the anionic surfactant sodium lauryl ether sulphate used in two foaming agents for mechanized tunnelling excavation. Journal of Hazardous Materials 365:538–545

    Article  CAS  Google Scholar 

  94. Katam K, Maetani K, Shimizu T, et al (2018) Study of aerobic biodegradation of surfactants and fluorescent whitening agents in detergents of a few selected asian countries (India, Indonesia, Japan, and Thailand). Journal of Water and Environment Technology 16(1):18–29

    Article  Google Scholar 

  95. Centurion VB, Moura AGL, Delforno TP, et al (2018) Anaerobic co-digestion of commercial laundry wastewater and domestic sewage in a pilot-scale EGSB reactor: The influence of surfactant concentration on microbial diversity. International Biodeterioration and Biodegradation 127:77–86

    Article  CAS  Google Scholar 

  96. Nguyen LN, Oh S (2019) Impacts of antiseptic cetylpyridinium chloride on microbiome and its removal efficiency in aerobic activated sludge. International Biodeterioration and Biodegradation 137:23–29

    Article  CAS  Google Scholar 

  97. Merkova M, Zalesak M, Ringlova E, et al (2018) Degradation of the surfactant Cocamidopropyl betaine by two bacterial strains isolated from activated sludge. International Biodeterioration and Biodegradation 127:236–240

    Article  CAS  Google Scholar 

  98. Tayag JR, Fabicon RM (2020) Biodegradability of single and mixed surfactant formulations. Songklanakarin Journal of Science and Technology 42(4):788–794

    CAS  Google Scholar 

  99. Nabeoka R, Kameya T, Yoshida T, Kayashima T (2020) Effects of adsorbent carriers in modified ready biodegradability tests of quaternary ammonium salts. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 55(11):1294–1303

    CAS  Google Scholar 

  100. Kapitanov IV, Jordan A, Karpichev Y, et al (2019) Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of l-phenylalanine-derived surface-active ionic liquids. Green Chemistry 21(7):1777–1794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2018/STG01/UIAM/03/2) (FRGS19-015-0623), Ministry of Higher Education (MOHE), Malaysia, and Department of Chemistry, Kulliyyah of Science, International Islamic University, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Hazman Danial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Danial, W.H. (2022). Surfactant Biodegradation. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics